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1 Introduction 
This report focuses on operational issues that characterise building management practices within public 

administrations, as illustrated in the following pages. As justified in previous reports, the research focuses 
on university buildings, selected as they represent a key segment of the public administration-managed 
stock within the extensive, nationally administered built heritage. 

University buildings are notable for their diverse functions, broad geographical spread, and the 
necessity to operate in line with both contextual needs and organisational strategies. As local public 
administrations, universities must define and implement strategies for managing facilities and 
infrastructure in line with strategic plans. Such strategies have to support institutional and managerial 
activities organically, aiming to balance the effectiveness and efficiency of the facilities with the needs and 
expectations of the personnel, students, and other stakeholders. On the other hand, university 
administrations must ensure their structures' ordinary and extraordinary maintenance daily to prevent 
degradation and maintain performance over time. 

During all these strategic and operational processes, these institutions have to justify -with appropriate 
supporting documentation/tools- how they manage these aspects within a systemic perspective that takes 
into consideration various complex factors, including, among the many, functionality, safety, comfort, 
energy use, and costs, all areas transversally interconnected with the broader issues related to occupancy 
and sustainability. They must also continuously evaluate the availability of suitable structural and 
infrastructural resources for their schools, faculties, and departments (or equivalent units) to support 
teaching, research, third mission and social initiatives. This systematic assessment should be conducted at 
varying intervals, depending on the diverse categories of resources and the related critical factors. In this 
context, projecting built asset management towards a performance-based dimension becomes 
undoubtedly crucial.  

As described in this text, this project's Digital Decision Support System (DDSS) aims to realise strategic 
and operational performance-based management of existing buildings by leveraging available digital 
technologies and combining them with efficient data integration, processing, and visualisation techniques. 
Specifically, this part of the research focuses on creating a data environment -i.e., a DDSS- capable of 
sharing knowledge about the energy performance of selected case studies and connecting this 
performance to information about planned occupancy conditions, to be used both in the short term 
(“How-To” logic) and long term (“What-If” logic). The goal is to assist building managers in becoming more 
aware of the energy behaviour of the buildings they manage while planning occupancy. Through the 
DDSS, this can be achieved by analysing the energy needs of different spaces and associating them with 
occupancy parameters using specific key performance indicators (KPIs). Such knowledge could lead, for 
instance, to managers prioritising using the most energy-efficient areas inside the building during 
appropriate hours and seasons and identifying improvement areas for enhancing energy efficiency. 

2 State of the art 
The Architecture, Engineering, Construction, and Operation (AECO) sector is responsible for a 

significant portion of the world’s energy consumption and environmental impacts [1–3]. Despite extensive 
research in the field, this sector is characterised by a lack of comprehensive innovation and has limited 
potential for long-term transformative change due to its inherent nature [4]. 

A crucial perspective for developing a sustainable and energy-efficient built heritage involves 
optimising building operations in the short term, with a focus on reducing operational costs, minimising 
environmental impacts, and lowering energy consumption, all while maintaining comfort for occupants. 



 

 
 

Grant number: 2022JMRX2A 

P a g e  5 | 69 

 

Addressing this issue is particularly important, considering that operational expenses and energy 
consumption can account for up to 75% of the total costs incurred during construction [5]. 

Advanced digital methods and tools, capable of generating valuable knowledge in the form of 
information, are therefore needed to provide decision support to building administrators [6]. In particular, 
filling the ‘knowledge gap’ in building management is crucially important in relation to energy management, 
among the numerous themes [7,8]. The complexity of such a framework demands a holistic approach to 
integrate both economic-financial asset management and technical-functional management within the 
context of performance-based strategies, aiming to the balance between functional requirements, energy 
demands, and environmental impacts, combining the ‘static knowledge’ of the containers -the buildings- 
with the ‘dynamic knowledge’ of the contents -the users and the activities inside them. 

The Digital Twin (DT) paradigm is evolving to facilitate new methods of sharing existing building 
information, aiming at optimising cost-benefit during their usage, thereby addressing these challenges [9–
12]. However, at present, public administrations and existing buildings are unprepared to integrate 
management processes with a full DT perspective, DTs being a highly complex technology still in scientific 
definition and buildings being scarcely equipped with advanced smart infrastructures. In this transitional 
period, the digitalisation of management processes should leverage the available technologies and 
competencies of the administrations, taking into account their level of smart readiness and following an 
incremental approach to digitalisation. 

2.1 Energy related issues in university campuses 
The pilots on which test the DDSS were chosen within the Italian university heritage. University 

buildings, in fact, are highly representative of the extensive research sample presented in WP1 given their 
unique functional complexity. 

The management and usage of these facilities are directly linked to public administrations, which are 
typically the major owners of such assets. In their various and complex forms, these administrations are 
often characterised by systemic constraints that do not allow for a transformative capacity aimed at 
optimising costs and benefits from a performance-based perspective. This incapability often results in the 
inefficient use of public finances. Furthermore, due to their widespread presence across different 
territories, the usual decentralisation of information in analog formats makes it difficult to have an up-to-
date and complete portfolio overview. This condition leads to difficulty in understanding the state of asset 
utilisation and planning corrective actions in line with strategic visions. 

This part of the research focuses on analysing energy-related issues that influence higher education 
buildings during their operation. This topic is becoming increasingly relevant since, over the past few years, 
higher education institutions have globally set target goals for energy savings and emission reductions, 
leading to the implementation of numerous measures to reduce energy usage [13–15], including the 
installation of renewable energy sources, the renovation of older buildings, and the promotion of policies 
for increasing awareness of energy conservation practices among buildings’ users. In addition to these 
measures, other interesting energy improvement strategies -often overlooked but significative for 
university buildings- can be considered, such as flexible working arrangements and demand-driven 
building system controls [16]. 

The energy usage and intensity of buildings on a higher education campus are influenced by several 
factors, including the climate, building systems, construction type, but also occupancy conditions [17]. 
Occupancy variables, such as the presence of students and staff members and the activities they do, can 
significantly impact energy consumption. For example, Gui et al [18], in ‘Reducing university energy use 
beyond energy retrofitting: The academic calendar impacts’, showed how the academic calendar, which 
regulates the occupancy condition of campus buildings, determines their energy consumption in Australian 
universities. In contrast, Mosteiro-Romero et al. [19] demonstrated how demand-driven building system 
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controls can save energy in university offices and how such strategies are important to adapting building 
use to climate change in summer conditions in Singapore. 

2.2 Current methods for energy assessment 
In recent decades, scientists and engineers have dedicated significant efforts to developing approaches 

for predicting energy consumption. These approaches can be broadly categorised into three types: 
building physical energy models (referred to as “white box” models), data-driven models (referred to as 
“black box” models), and hybrid models (referred to as “grey box” models) [20].  

The first category of building energy models, known as the “white box” model, relies on detailed 
building parameters and heat balance equations. This approach involves modeling the physical 
characteristics of a building, such as its construction materials, insulation, ventilation systems, and thermal 
properties, and the contextual factors, such as solar radiation, weather conditions, and occupancy 
patterns. The modeling and calibration process of “white box” software poses significant challenges for 
building energy stakeholders due to the extensive input parameters required, leading to time-consuming 
development on a physical software platform and high simulation economic costs. However, when well 
calibrated, the physical models’ prediction accuracy can be higher than the statistical models [21], as well 
as their interpretability. 

Given the limitations of white box models and the rapid advancements in big data technologies like 
sub-metering and smart buildings, data-driven models have emerged as a viable alternative in the last 
decade. Black box models offer a simpler approach by capturing the linear and nonlinear relationships 
between input and output variables. The main research efforts in the last period focused on investigating 
deep learning techniques and optimising two key aspects: the significance of features to train models and 
the choice of algorithms. However, training these models and achieving accurate predictions under 
different conditions typically require vast amounts of historical data and a lengthy training period [20]. 
Moreover, while black box models have the advantage of needing less building information for their 
development, their prediction accuracy fluctuates, particularly when applied to different building 
scenarios. To address these challenges, a solution known as the “grey box” approach has been suggested 
by the literature. This method incorporates a simplified physical model and readily available data to 
simulate building energy demand, effectively combining the benefits of white and black box approaches. 

White box models were employed in the presented application because of the absence of 
measurement data and their higher level of standardisation in already developed software ontologies 
(compared to the black box and grey box models currently available in literature). By adopting this 
approach, the connection between input and output for analysis becomes more comprehensible, 
particularly in terms of educating building managers about building behavior. However, some 
approximations were made due to the complexity of inputting the many input parameters required by 
Energy Plus for calculation, as discussed in the previous section. 

2.2.1 White-box methods 
Building performance simulations (BPS) assess building performance using computer-based 

mathematical models and applying fundamental physical principles and engineering techniques [22]. 
Simulation models can be distinguished as linear or nonlinear [23] BPS models are also called ‘white box’ 
models, since their approach involves calculating output variables by considering rules established b.y 
domain knowledge theories, inputting factors usually friendly to technicians, such as physical 
characteristics of buildings (construction materials, insulation, ventilation systems, and thermal properties, 
etc.) and contextual factors (solar radiation, weather conditions, occupancy patterns, etc.). 
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Laying its foundation in the 1970s, BPS has undergone significant evolution over several decades, as 
traced by Augenbroe et al. in 2002 [24] and later by Oh et al. [25]. According to them, two key aspects 
drove this technology’s maturation: progressively increasing quality assurance and growing integration 
capabilities between simulation tools and expertise in the design process. Starting in the early 2000s, 
research efforts were directed towards addressing several key challenges in building simulation. These 
included the need to efficiently capture intricate geometries and complex systems, improving the 
integration of simulation with data-driven systems, developing new models capable of handling a wide 
range of time scales and additional physical phenomena, creating innovative methods for optimisation in 
the presence of uncertainty and risk, and making notable advancements in the verification and validation 
processes [26]. 

In recent times, the field of BPS is currently thriving, experiencing significant research and 
development, with increasing adoption in practical applications that span various aspects, including energy 
[27], daylight  [28], thermal comfort [29], ventilation [30], indoor air quality [31], acoustics [32], structural 
and fire safety analysis [33]. These applications can range from the building or its components’ scale to 
district and urban levels [34]. Substantial research efforts in BPS have been focused on three pivotal areas:  

• addressing the ‘performance gap;’  
• enhancing interoperability between BPS and BIM; 
• improving calculations thanks to AI.  

2.2.1.1 Performance gap 
BPS simulations are often affected by the so-called ‘performance gap’ [35,36]. It means there is a 

difference between the predicted and the actual performance of a building during its operation. This gap 
can arise due to uncertainties, wrong assumptions made during the modelling process, or discrepancies 
between the design and the as-built statuses. Its magnitude can be significant, as scientific reports point 
to the measured energy consumption potentially reaching 2.5 times the anticipated energy usage [37]. 

Recently, the issue has become increasingly important, especially concerning the energy question. 
Indeed, the rapid deployment of automated energy meter reading technology, capable of collecting data 
at hourly or even sub-hourly intervals, has made the performance gap more visible. In this field, the 
performance gap may erode trust and nurture scepticism among the actors involved in design and 
management of buildings. It is crucial to bridge this gap for two key reasons. Firstly, the construction 
industry needs to prove that both new and existing buildings sustain optimal performance over their entire 
lifespan. Secondly, ensuring optimal performance is a core prerequisite for adopting innovative FM 
strategies, like performance-based building management and performance contracting [35]. 

The most used technique for addressing the performance gap and enhancing the credibility of 
simulations is known as ‘model calibration.’ The findings from Chong et al. clearly indicate a notable 
increase in the adoption of calibration approaches, which can be both automated (such as Bayesian 
calibration and global sensitivity analysis) and manual (involving detailed audits, expert knowledge, and 
evidence-based procedures) [36]. As per the authors, energy performance simulation models are typically 
calibrated based on one or two observed outputs, with the primary sources of data for the calibration 
process being monthly electricity consumption data obtained from utility bills and hourly indoor dry bulb 
temperature data monitored though sensors and the thermophysical properties of the building envelope, 
infiltration rates, internal heat gain densities, and indoor temperature setpoints being the input parameters 
most used for the calibration. However, it is worth noting that the calibration of BPS models remains 
challenging in practice due to the absence of clear guidelines and best practices, as well as issues related 
to reproducibility. 
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2.2.1.2 BIM-BPS interoperability 
With the rise of BIM, BPS has started to be integrated into the design and management practice as part 

of more complex models that are not limited to a single discipline. This integration optimises the 
information flow and provides a holistic view of projects for both new constructions and existing buildings 
[38]. However, there is still a lack of bidirectional interoperability between BPS and BIM tools [39,40]. 
Current practices often involve creating a second unlinked digital model starting from the BIM for 
conducting performance simulations. Splitting models can lead to loss of information, repetitive and time-
consuming tasks, and miscoordination between designers and performance analysts, ultimately hindering 
the design process, especially in the early stages. 

Among the various topics, the interoperability issue between BIM and Building Energy Modelling (BEM) 
has been the subject of numerous research studies. These studies concur that many unresolved issues in 
developing BIM-based building energy modelling still lead to an unoptimal data flow integration [41], 
which is still a challenge to solve. 

For instance, digital environmental simulations can present a computational bottleneck concerning the 
complexity of geometry [42]. BIM-based simulation models often result in high polygon counts, making 
simulations more time-consuming and less controlled. BPS tools usually require models with regular 
squared mesh for tasks like daylight analysis, computational fluid dynamics, or safety pathfinding 
simulations. Furthermore, BIM and BEM systems might employ different geometry kernels and data 
dictionaries, impacting their performance and compatibility with various software tools [43]. This 
discrepancy in underlying data structures can hinder smooth data exchange and integration between the 
two systems, further complicating the interoperability challenge. 

Another gap is related to the available data formats for BIM and BEM. Typically, data transmission 
between BIM and BEM is performed through two file formats: IFC and Green Building Extensible Markup 
Language (gbXML) [44]. Both have their unique advantages. IFC is considered the standard format for 
information exchange in BIM. On the other hand, gbXML is a format based on rectangular-shaped surfaces 
and their attributes rather than objects and can store nearly all the building information needed for energy 
simulation. IFC-gbXML integration is not straightforward because these modelling systems rely on 
different approaches, languages, and protocols, sometimes incompatible. Although academic research has 
made progress in improving BIM-to-BEM interoperability through IFC and gbXML through ‘export-import’ 
procedures, achieving bidirectional data exchange between BIM and BEM through available software is 
still challenging. 

2.2.2 Gray-box methods 
In recent times, the need to develop applications for asset management or design has sparked a 

subsequent need for increasingly faster performance calculations, capable of being developed into real 
and proper applications and promptly responding to the requests of application users. From this, together 
with the development of AI, new approaches to performance modelling have emerged to enable faster 
calculations.  

In addition to building simulation models (referred to as ‘white box’ models), data-driven models 
(referred to as ‘black box’ models) and hybrid models (referred to as ‘grey box’ models) have been 
introduced [45]. These solutions are valuable alternatives to traditional building performance simulation, 
but they all have limitations.  

The choice between them varies according to the needs. Black box models offer a simpler approach by 
capturing the linear and nonlinear relationships between input and output variables. Nonetheless, training 
these models and achieving accurate predictions under different conditions typically require vast amounts 
of historical data and a lengthy training period. Moreover, while black box models have the advantage of 
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needing less building information for their development, their prediction accuracy fluctuates, particularly 
when applied to different building scenarios. To overcome this limitation, the ‘grey box’ approach 
incorporates a simplified physical model and readily available data to simulate building energy demand, 
effectively combining the benefits of white and black box approaches. Grey box and black box models can 
speed up the calculation time and are effectively usable within tools, but they are less controllable and, 
sometimes, difficult to train. In contrast, when well calibrated, white box models’ prediction accuracy and 
interpretability can be higher than the statistical models [46]. Nevertheless, white box software’s 
modelling and calibration process poses significant challenges for building energy analysts due to the 
extensive input parameters required, leading to time-consuming modelling processes. 

2.2.3 Black-box methods 
As black-box models, data-focused structures are progressively seen as crucial elements in BPS to 

address the dynamic needs concerning asset management, design optimization, and timely energy 
efficiency [47,48]. In contrast to "white-box" methodologies, which require the formulation of highly 
intricate physical models pertaining to geometry and boundary conditions, or "grey-box" approaches that 
endeavor to strike a balance between fundamental physical principles and statistical inference, the black-
box paradigm functions without explicit understanding of the system's internal mechanisms, concentrating 
solely on the discernible linear and non-linear correlations between system inputs and outputs. 

Through the analysis and examination of a dataset that includes historical time-series data reflecting 
various operational conditions and building behaviors, diverse algorithms are capable of extracting 
knowledge from the data. This assimilated knowledge empowers these algorithms to predict future 
performance based on the input data provided. Contextual information, such as temperature, occupancy 
levels, equipment utilisation, and set points, serves as input variables to forecast fluctuations in energy 
consumption. Moreover, these models can offer insights into the variability of parameters once energy 
consumption is established. 

As previously articulated, "black-box" methodologies encompass automated learning techniques, 
commonly referred to as "machine learning," alongside statistical analysis. The most rudimentary form of 
machine learning approaches comprises "Regression" models, ranging from "Linear" regression, which 
seeks to establish a linear correlation between input and output parameters, to more intricate models such 
as "Polynomial" regression and "Non-Linear" regression that encapsulate more sophisticated relationships. 
"Multiple" regression [49] facilitates the assessment of the simultaneous impact of various factors. 
"Regularised" regression techniques serve to mitigate over-complexity and overfitting, thereby preserving 
generalizability. Taking cues from the human brain's layout, Artificial Neural Networks [50–52] utilise 
linked 'neurons' to interpret information through a non-linear process. These networks are particularly 
adept at modeling intricate systems and discerning non-linear relationships, such as predicting thermal 
loads in buildings based on meteorological data, occupancy patterns, and equipment schedules. A variety 
of ANN architectures exist, including Feedforward Networks, where information flows unidirectionally 
through the layers of neurons. Time-series data is particularly suited for Recurrent Neural Networks 
(RNNs) because of their interconnected neurons that form cycles, facilitating the storage of historical 
insights. Long Short-Term Memory (LSTM) networks adopt a similar structure to RNNs but are more 
proficient at managing long-term recurrences, thereby circumventing the "vanishing gradient" issue 
inherent in this algorithm. Deep Learning (DL) harnesses networks featuring numerous obscured layers to 
obtain abstract data representations. Support Vector Machines (SVMs) ascertain an optimal hyperplane 
for data segregation or, in the case of regression, the approximation of input-output relationships, with 
the "kernel trick" facilitating the management of non-linear relationships. Decision Trees (DTs) construct 
a sequential order of decisions predicated on input values, while Random Forests (RFs) amalgamate 
predictions from multiple trees to enhance robustness. Gradient Boosting sequentially integrates trees 
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[49,53–55]. Gaussian Processes (GPs) provide a probabilistic framework for predictions, quantifying 
uncertainty in a manner distinct from other methodologies. Time series analysis employs models such as 
ARIMA and SARIMA, which are grounded in the statistical examination of the structure of time series data. 

The black-box approach offers the advantage of requiring few parameters for model development. The 
primary limitation of this methodology lies in the quantity and quality of the data. Typically, trained models 
rely on time-series data that are limited in temporal span, providing information and observations for only 
a restricted period and thus sampling a very small number of scenarios. Similarly, the predictive model is 
sensitive to the building's boundary conditions, such as climate. The building's usage type is also a 
significant factor influencing usage profiles and energy consumption. 

2.3 KPIs for operations What-If/How-To scenarios 
For the definition of the KPIs, the requirements of the "What-If" and "How-To" logics, as explained in 

Section 2.1 – Logics and functionalities of deliverable D1.1 - Definition of an occupant-centric conceptual 
framework and correlation methodology, were first analysed. The "What-If" logic deals with medium- to 
long-term predictions to support future decisions. The "How-To" logic deals with short-term predictions 
to support real-time decisions, based on historical data and designed to interact with real-time 
information. In the development of the KPIs, five main disciplinary areas were identified: Use, Energy, 
Costs, Environment, and Well-being. Based on these five macro-areas, several specific objectives were 
identified, relating to one or both of the aforementioned logics. The results of the objective identification 
process are presented in the Table 1. 

Table 1: Tables of Operation KPIs identified by DIGITMAN. 

Code Name Area Logic Description Goal 

KPI O-1.1 

Utilisation 
Rate 

Use What-If / 
How-To 

Percentage of time that a 
specific space is occupied 
compared to the total 
available time.  

It helps determine how long 
the space is being utilized. 

KPI O-1.2 

Occupancy 
Rate 

Use What-If / 
How-To 

Average number of 
occupants in a space 
compared to its maximum 
capacity. 

It provides insights into the 
utilization of individual space 
and identifies spaces that 
may be over or 
underutilized. 

KPI O-1.3 

Real Time 
Occupancy 
Rate 

Use How-To Measurement of the 
variation of the occupancy in 
the spaces in timeseries to 
identify irregular occupancy 
pattern 

Identify the occupation in 
real time through both 
measurement and 
predictions 

KPI O-1.4 

Standard 
Deviation 
Occupancy 
Variabiliity 

Use How-To Measurement of the 
variation of the occupancy in 
the spaces in timeseries to 
identify irregular occupancy 
pattern 

Identify irregular patterns in 
space use 

KPI O-2.1 

Energy Need Energy What-If Tons of oil equivalent to the 
ideal energy needed for 
heating, cooling, lighting, 
ventilationg and using the 
appliances of a building or its 
zones. 

It helps understaing how 
much electricity is needed 
for operating the zoneor 
building. 

KPI O-2.2 
Electricity 
Power Need 
at Peak 

Energy What-If The highest level of 
electricity power used within 
a specific time period, 

It enables better load 
balancing within the building 
and optimisation the 
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Code Name Area Logic Description Goal 
typically measured in 
kilowatts (kW). 

distribution of energy loads 
to avoid overloading any 
particular circuit, system, or 
equipment.  

KPI O-2.3 

Natural Gas 
Power Need 
at Peak 

Energy What-If The highest level of heating 
power used within a specific 
time period, typically 
measured in kilowatts (kW). 

It enables better load 
balancing within the building 
and optimisation the 
distribution of energy loads 
to avoid overloading any 
particular circuit, system, or 
equipment.  

KPI O-2.4 
Electricity 
Consumption 
per Occupant 

Energy How-To Measurement of the 
efficiency of the devices per 
person 

Spot peak consumption of 
energy in different 
conditions of use per person 

KPI O-3 

Energy Costs Costs What-If Measures the expenses 
associated with electricity, 
natural gas, and district 
heating consumption within 
a building or facility. 

It allows for identifying areas 
of higher energy 
consumption to implement 
energy-saving measure and 
reduce overall energy 
expenses towards energy 
efficiency. 

KPI O-4 

CO2 
Emissions 
due to 
Energy Use 

Environ
ment 

What-If Amount of CO2 emissions 
produced as a result of the 
building's energy 
consumption from the grid. 

It allows for tracking of the 
environmental impact in 
terms of CO emissions due 
to the use of energy within a 
building or its zones. 

KPI O-5.1 
Thermal-
Hygrometric 
Setpoint 

Well-
Being 

How-To Percentage of time during 
working hour within the 
comfort tresholds 

 

KPI O-5.2 

Thermal-
Hygrometric 
Rate 

Well-
Being 

How-To Percentage of time during 
the day which the indoor 
temperature setpoints do not 
meet the desired conditions 
while the space is occupied. 
It could also be a comfort 
measure as PPD or PMV. 

To ensure occupant comfort, 
productivity, and well-being. 
To identify areas where the 
HVAC or environmental 
control systems may need 
adjustments or 
improvements to maintain 
desired comfort levels 

KPI O-5.3 
Visual 
Setpoint 

Well-
Being 

How-To Percentage of time during 
working hour within the 
comfort tresholds 

 

KPI O-5.4 

Visual Rate Well-
Being 

How-To The percentage of time that 
sufficient visual comfort is 
ensured, such as adequate 
workplane illuminance or 
appropriate lighting levels, 
during the considered period 
while the space is occupied. 

Ensure that occupants have 
access to suitable lighting 
conditions that support their 
visual tasks and promote 
visual comfort 

KPI O-5.5 
Air Quality 
Setpoint 

Well-
Being 

How-To Percentage of time during 
working hour within the 
comfort tresholds 

 

KPI O-5.6 

Air Quality 
Rate 

Well-
Being 

How-To Percentage of time during 
which the CO2/TVOC 
concentration in the indoor 
air exceeds the desired 

To improve indoor air quality 
and avoid potential health 
issues. By ensuring proper 
ventilation, air circulation, 
and control of pollutant 
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Code Name Area Logic Description Goal 
setpoint while the space is 
occupied 

sources, the aim is to 
maintain CO2/TVOC 
concentrations within 
recommended levels for 
occupant comfort and well-
being. 
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3 What-If logic 

3.1 Methods and Tools 

3.1.1 Overview 
The proposed methodology for data collection in digital models is organised into several phases and is 

interrelated with other WPs’ activities. In particular, the general development phases are: 

1. Topological BIM (addressed in WP1); 
2. BIM-to-BEM (addressed in this WP3’s report); 
3. BIM-to-BSM (addressed in this WP4); 
4. Multicriteria analysis (to be addressed in WP5). 

The first, conducted in WP1 and briefly summarised below for ease of reading, involves semi-
automatically creating the BIM of some case study buildings, enriched with all the information necessary 
for energy and safety analyses, also called Topological BIM (TBIM). These models are semi-automatically 
generated with the objective of being compliant with BPS and BSM. 

The second step comprised the automated BIM-to-BEM (Building Energy Model) conversion. 
Similarly, the third step consists of the transformation of the BIM into a BSM (Building Safety Model), 

described in D4.1 – KPIs and predictive methods for safety tasks. 
In the final phase, simulations will be run, and the results will be interpreted in an integrated manner 

using project-defined KPIs to identify the optimal management strategies regarding space use, energy 
needs, and occupant safety.  

The first and third phases are presented in this report, while the last, under development, will be the 
subject of future reports (WP5). 

3.1.2 Topological BIM 
The BIM process was conducted leveraging the Topological BIM (TBIM) process, documented in WP1’s 

report D1.1 – Definition of an occupant centric framework, which allowed us to semi-automatically 
generate a BIM rich with all the information needed for safety verifications. The process is briefly 
summarized below. 

3.1.2.1 3D modeling 
The initial substep is to model the building's geometry. This is done by creating a closed 3D BRep object 

for each building space by retracing the administrators' CAD drawings in a 3D modelling environment. 
This volume, representing the gross shape of the space boundary, is then transformed into a Topologic 
“cell”, serving as the foundational spatial unit in the digital model. 

3.1.2.2 Topology modelling 
The topology modelling substep establishes the topological relationships between the model's core 

elements. Thanks to Topologicpy, the cells are combined into a higher-level spatial entity known as the 
“cell complex”, a digital model consisting of topologically interconnected spaces and binding surfaces 
(“Collector Model”) to transform the geometric cells into topological cells. Although the cells do not 
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contain any data at this point, they are prepared to be populated with information. For this reason, they 
are called “Informational Collectors,” serving as the primary data aggregators in the modelling process. 

3.1.2.3 Information enrichment 
In this subphase, conditional modelling is used to assign information to the elements within the 

Collector Model. 
First, functional data is added to the Collectors by attributing “Informational Load Dictionaries” (ILDs) 

to them. ILDs are JSON dictionaries, each representing a specific space occupancy type (e.g., office, 
classroom, corridor, etc.) and containing relevant operational and safety data (e.g., thermal setpoints, 
electricity loads, area per occupant, etc.). To enrich a Collector, a space occupancy type is assigned to it, 
choosing between the occupancy types modelled in the ILDs, and the corresponding ILD is transferred to 
the corresponding cell, enriching it with the ILD’s embedded data. The relevant data added to the spaces 
concerning operation evaluations are reported in Table 2. 

Table 2. Operation properties added to the spaces of the topological model in the information enrichment step 

Property Name Description Quantity Unit 
pr_ArtificialLighting Indication whether this space requires artificial 

lighting (as natural lighting would be not 
sufficient). (TRUE) indicates yes (FALSE) 
otherwise. 

Boolean - 

pr_EquipmentPowerDensity This is typically the maximum electrical power 
input (in Watts/m2) to using electric appliances 
in a zone, including PCs, plotters, elevators and 
other equipment, if present. This value is 
multiplied by a schedule fraction to get the 
electric power in a particular timestep. 

Power 
Density 

W/m2 

pr_Illuminance Required average illuminance value for this 
space. 

Illuminance lux 

pr_IsCooled Indication whether this space requires air 
conditioning provided (TRUE) or not (FALSE). 

Boolean bool 

pr_IsHeated Indication whether this space requires heating 
provided (TRUE) or not (FALSE). 

Boolean bool 

pr_IsMechanicallyVentilated Indication whether the space is required to 
have mechanical ventilation (TRUE) or not 
(FALSE). 

Boolean bool 

pr_IsNaturallyVentilated Indication whether the space is required to 
have natural ventilation (TRUE) or not (FALSE). 

Boolean bool 

pr_IsOccupied Indication whether the space is permanently 
occupied (TRUE) or not (FALSE) according to 
energy modeling purposes. For examples, 
offices and classrooms are permanently 
occupied, while circulation spaces or storage 
spaces not. 

Boolean - 

pr_LightingLevel This is typically the maximum electrical power 
input (in Watts) to lighting in a zone, including 
ballasts, if present. This value is multiplied by a 
schedule fraction to get the lighting power in a 
particular timestep. 

Power W 

pr_LightingPowerDensity This is typically the maximum electrical power 
input (in Watts/m2) to lighting in a zone, 
including ballasts, if present. This value is 
multiplied by a schedule fraction to get the 
lighting power in a particular timestep. 

Power 
Density 

W/m2 
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Property Name Description Quantity Unit 
pr_MechanicalVentilationRate Indication of the requirement of a particular 

mechanical air ventilation rate, given in air 
changes per hour. It is calculated during the 
DigitMan's BIM modelling process. 

AirChanges [h-1] 

pr_MechanicalVentilationRatePerPe
rson 

MechanicalVentilationRatePerPerson Standard 
value for mechanical ventilation of spaces given 
by UNI EN 10339. For university classrooms, it is 
equal to 7 L/s per person. 

AirChanges [L/s pp] 

pr_MechanicalVentilationRatePerVo
lume 

MechanicalVentilationRate standard value for 
mechanical ventilation of special spaces (e.g. 
toilets) given by UNI EN 10339. It should be filled 
when MechanicalVentilationRatePerPerson is not 
identifiable according to UNI EN 10339. 

AirChanges [h-1] 

pr_NaturalVentilationRate Indication of the requirement of a particular 
natural air ventilation rate, given in air changes 
per hour. It is calculated during the DigitMan's 
BIM modelling process. 

AirChanges [h-1] 

pr_OccupancyDensityOperation ** Design occupancy loading for this type of usage 
assigned to this space according to UNI EN 
10339. 

Occupancy 
Density 

pp/m2 

pr_OccupancyNumber ** Number of people required for the activity 
assigned to this space. 

People 
Count 

pp 

pr_OccupancyType * Occupancy type for this object. It is defined 
according to DigitMan's classification system. 

Text - 

pr_SpaceHumidityMax Max humidity of the space or zone that is required 
from user/designer view point 

Relative 
Humidity 

% 

pr_SpaceHumidityMin Min humidity of the space or zone that is required 
from user/designer view point 

Relative 
Humidity 

% 

pr_SpaceTemperatureSummerMax Maximal temperature of the space or zone for the 
hot (summer) period, that is required from 
user/designer view point. 

Temperature °C 

pr_SpaceTemperatureSummerMin Minimal temperature of the space or zone for the 
hot (summer) period, that is required from 
user/designer view point. 

Temperature °C 

pr_SpaceTemperatureWinterMax Maximal temperature of the space or zone for the 
cold (winter) period, that is required from 
user/designer view point. 

Temperature °C 

pr_SpaceTemperatureWinterMin Minimal temperature of the space or zone for the 
cold (winter) period, that is required from 
user/designer view point. 

Temperature °C 

pr_SpaceWindLoadRating Wind load resistance rating for the window and 
doors located in the space. It is provided 
according to the national building code (EN15254 
for DigitMan). 

Text - 

 
* The data on occupancy types was provided by the building administration and verified through on-site inspections. Subsequently, it was 
aligned with the OmniClass notation (Table 13); see WP1’s report D1.2 – Integrated structuring of a common database.  
 
** For special spaces like classrooms, occupancy properties were set manually space by space and considered equal to the number of seats 
within the space. 

 
Next, after adding data to the cells, ILD information is transferred to the adjacent faces, binding the 

cell by executing topological queries. For instance, a partition wall is informed of the occupancy types of 
the spaces it delimits (e.g., “corridor-office”) and respective data (e.g, "unheated-heated”).  
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The faces then undergo additional data enrichment using the “Informational Rulesets” (IRSs), mainly 
containing construction data about envelope components (e.g., thickness, material, and thermal properties 
of walls, floors, roofs and openings). These key-value dictionaries contain “conditions” and “styles” 
applicable to faces. The conditions specify the property values a face should have for applying the IRS to 
it, while the styles define the new data to be assigned to the face if it meets the conditions. The assignment 
of IRS data is also carried out through topological queries. Each IRS is applied iteratively to each face 
within the Collector Model. The condition values are accessed and compared to the face's properties for 
each face. If a match occurs, the dictionary containing the style data is added to the face; if not, the 
iteration proceeds to the next face. The outcome is the so-called “Style Model”, a Topologic cell complex 
containing the ILDs' data (operational data) and IRSs' data (construction data).  

Relevant operational properties added to the doors thanks to topological and conditional modeling are 
reported in Table 3. 

Table 3: Operation properties automatically added to the doors of the topological model 

Property Name Description Quantity Unit 
pr_ConstructionName Name of the set of materials associated with walls, roofs, 

floors, windows, and doors modeled in BIM 
IfcLabel - 

pr_IsExternal Indication whether the element is designed for use in the 
exterior (TRUE) or not (FALSE). If (TRUE) it is an external 
element and faces the outside of the building 

IfcBoolean - 

pr_MainExposure Describes the exposure of the surface by choosing 
between N, W, E, S, and N-E, N-W, S-E, S-W 

IfcLabel - 

pr_SurfaceType Type of surface according to EnergyPlus: can be Wall 
(Exterior, Adiabatic, Underground, Interzone), Roof, 
Ceiling (Adiabatic, Interzone), Floor (GroundContact, 
Adiabatic, Interzone), Window, Door 

IfcLabel - 

pr_ThermalTrasmittance Thermal transmittance coefficient (U-Value) of an 
element. 

IfcThermalT
ransmittanc
eMeasure 

W/m2K 

pr_TopologicalType Describes the interface element from a topological 
perspective (internal vertical, external vertical, internal 
horizontal, top horizontal, bottom horizontal for surfaces, 
door, hole, or window for openings) 

IfcLabel - 

3.1.2.4 BIM modelling 
To finalise the BIM, the apertures are created. They include doors, holes, and windows. Doors represent 

apertures allowing for horizontal passage between adjacent cells on the same storey, while holes for 
vertical passage (e.g., between staircases). Windows, instead, links the cells to the external environment. 
Such apertures are modelled as face elements in Topologicpy, based on the IRS data associated with the 
faces hosting them. 

Subsequently, the Style Model is converted into a Topologic graph to perform graph analysis and detect 
and correct any errors in the topology modelling process. The outcome is the TBIM, a Topologic cell 
complex semi-automatically populated with data relevant to BPS analysis, i.e. using BSM. The components 
in this model (i.e., cells, faces, and apertures) form a network of interconnected objects suitable for direct 
transformation into BEM and BSM. 

As the last substep of the BIM phase, using pyRevit and aligning Topologic's class hierarchy with Revit's 
and IFC’s element classes, the Topologic TBIM is transformed as an Autodesk Revit model. Following this, 
minor manual adjustments are made to specific instance objects in Revit and direct IFC export is 
performed. For example, TBIM’s apertures, by default placed at the centre of faces, are repositioned as 
needed, and any errors in construction data assignments to faces and apertures are corrected.  
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Moreover, the properties that cannot be represented in the ILDs on a functional basis and need to be 
assigned space by space are added to spaces (such as occupancy properties of special spaces, like 
classrooms). All these modifications are synchronised with the Topologic model. The outcome is a 
streamlined BIM model, available in Revit, IFC, and Topologic JSON formats, containing all the essential 
information for energy and safety analyses. 

The properties added to the doors are reported in Table 4, while the output BIM of POLIMI’s case 
study is shown in Figure 1. 

Table 4: Safety properties manually added to the doors of the BIM model 

Property Name Description Quantity Unit 
pr_Area Total area of the outer lining of the window. IfcAreaMeasure m2 

pr_FrameMaterial Material of the frame of the opening IfcLabel - 

pr_FrameThermalTrasmittance Thermal transmittance of the frame of the opening IfcThermalTrans
mittanceMeasure 

W/m2K 

pr_FrameThickness Thickness of the frame of the opening IfcPositiveLength
Measure 

mm 

pr_Glass1Thicnkess Thickness of the first (inner) glass layer. IfcPositiveLength
Measure 

mm 

pr_Glass2Thicnkess Thickness of the second (intermediate or outer) 
glass layer. 

IfcPositiveLength
Measure 

mm 

pr_Glass3Thicnkess Thickness of the third (outer) glass layer. IfcPositiveLength
Measure 

mm 

pr_GlassLayers Number of glass layers within the frame. E.g. "2" for 
double glazing. 

IfcCountMeasure
" 

- 

pr_GlassThermalTrasmittance Thermal transmittance coefficient (U-Value) of the 
gas. 

IfcThermalTrans
mittanceMeasure 

W/m2K 

pr_GlazingAreaFraction Fraction of the glazing area relative to the total 
area of the filling element. It shall be used, if the 
glazing area is not given separately for all panels 
within the filling element. 

IfcNormalisedRati
oMeasure" 

- 

pr_Height Total outer heigth of the window lining IfcPositiveLength
Measure" 

m 

pr_IsExternal Indication whether the element is designed for use 
in the exterior (TRUE) or not (FALSE). If (TRUE) it is 
an external element and faces the outside of the 
building 

IfcBoolean - 

pr_MainExposure Describes the exposure of the surface by choosing 
between N, W, E, S, and N-E, N-W, S-E, S-W 

IfcLabel - 

pr_Perimeter Total area of the outer lining of the window. IfcPositiveLength
Measure 

m 

pr_ShadingCoefficient (SC): The measure of the ability of a glazing to 
transmit solar heat, relative to that ability for 3 mm 
(1/8-inch) clear, double-strength, single glass. 
Shading coefficient is being phased out in favor of 
the solar heat gain coefficient (SHGC), and is 
approximately equal to the SHGC multiplied by 
1.15. The shading coefficient is expressed as a 
number without units between 0 and 1. 

IfcNormalisedRati
oMeasure 

- 

pr_SolarHeatGainTransmittance (SHGC): The ratio of incident solar radiation that 
contributes to the heat gain of the interior, it is the 
solar radiation that directly passes (Tsol or τe) plus 
the part of the absorbed radiation that is 

IfcNormalisedRati
oMeasure 

. 
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Property Name Description Quantity Unit 
distributed to the interior (qi). The SHGC is referred 
to also as g-value (g = τe + qi). 

pr_SurfaceType Type of surface according to EnergyPlus: can be 
Wall (Exterior, Adiabatic, Underground, Interzone), 
Roof, Ceiling (Adiabatic, Interzone), Floor 
(GroundContact, Adiabatic, Interzone), Window, 
Door 

IfcLabel - 

pr_ThermalTrasmittance Thermal transmittance coefficient (U-Value) of the 
window. 

IfcThermalTrans
mittanceMeasure 

W/m2K 

pr_VisibleLightReflectance Fraction of the visible light that is reflected by the 
glazing at normal incidence. It is a value without 
unit. 

IfcNormalisedRati
oMeasure" 

- 

pr_VisibleLightTrasmittance Fraction of the visible light that passes the object at 
normal incidence. It is a value without unit. 

IfcNormalisedRati
oMeasure" 

- 

pr_Width Total outer width of the window lining. IfcPositiveLength
Measure" 

m 

pr_WindLoadRating Wind load resistance rating for this object. It is 
provided according to the national building code. 

IfcLabel" - 

 
 

 

Figure 1: Case study BIM Model (left IFC, right Topologic). 

3.1.3 BIM-to-BEM 
The BIM-to-BEM conversion uses a Python algorithm that aligns Topologic's and IFC's element classes 

and properties with those of Ladybug Tools (via the Honeybee Energy APIs) and EnergyPlus (via the Eppy 
library). Alignment of the ontologies in DIGITMAN is illustrated in Figure 2, while the BIM-to-BEM process, 
depicted in Figure 3, is explained below. 

Format Case study 1 
UNIVPM – Edificio BAS 

Case study 2 
POLIMI – Edificio 9 

Case study 3 
POLIMI – Edificio 10 

Autodesk 
Revit 

   
IFC 

  
 

Topologic 
JSON 
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Figure 2. BIM-to-BEM workflow. 

 

 

Figure 3. BIM-to-BEM workflow. 

3.1.3.1 Zoning and geometry 
The Topologic TBIM is used to model the geometry of the BEM.  
First, the TBIM cells are aggregated into Topologic cluster objects representing the BEM's thermal 

zones. The zoning process makes use of the topological methods to cluster neighbour cells and machine 
learning techniques (i.e., K-Means clustering) to further group them according to their occupancy and 
operational data, which are retrieved from the IFC model (for this application, the attributes considered 
for space clustering are: “is occupied”, “is heated”, “is cooled”, and “area per occupant”).  

Second, aggregation operations like sum, average, weighted average, minimum, and maximum are 
executed to transfer the cells' data pertinent to energy analysis to the thermal zones. Following that, by 
integrating Topologicpy with the Honeybee (HB) APIs, the Topologic faces are converted into HB faces, 
and the Topologic apertures into HB apertures. Zone by zone, HB faces and apertures are given as input 
to the HB “Room” method, creating the energy zones forming the basic “HB Model”. 
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Results of the zoning process are depicted in Figure 4. 
 

 

 

Figure 4. BEM model of Building 10 and Building 09(POLIMI). Faces colored by zone. 

3.1.3.2 Boundary conditions 
When creating the HB model, the boundary conditions between the HB faces that make up the model 

(i.e., “outdoor”, “adiabatic”, “ground”) are automatically computed.  
Then, the faces of the building adjacent to other buildings are manually set to “adiabatic” (Errore. 

L'origine riferimento non è stata trovata.). 
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Figure 5. BEM model of Building 10 and Building 09 (POLIMI). Faces colored by boundary condition (red: adiabatic, blue: 
outdoors, yellow: ground). 

 

3.1.3.3 Construction characteristics and openings 
Construction data is the first added to the basic HB Model (Figure 6).  
Opaque envelope data is extracted directly from the “IfcMaterialLayerSets” associated with the 

“IfcWalls” and “IfcSlabs” in the IFC model, getting the thickness, conductivity, density, and specific heat of 
the “IfcMaterials” composing the layer sets. IfcMaterials are thus converted into HB “EnergyMaterial” 
objects, which are then used within HB “OpaqueConstruction” objects.  

Subsequently, the thermal data of the apertures is transferred to the components of the HB Mode, 
with glazed component data (such as thermal transmittance, solar heat gain coefficient, and visible 
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transmittance) extracted from the “IfcWindowTypes” and “IfcDoorType” of the IFC, respectively 
converted into HB “WindowConstruction” and HB “Door” objects. 
 

 

 

Figure 6. BEM model of Building 10 (POLIMI). Faces colored by construction type. 

 



 

 
 

Grant number: 2022JMRX2A 

P a g e  23 | 69 

 

 

 

Figure 7. BEM model of Building 09 (POLIMI). Faces colored by construction type. 

3.1.3.4 Context shadings 
To simulate shade effects on the model, context elements that cast shadows on the building (e.g, 

vegetation, surrounding buildings, shading systems) are modelled within a 3D modelling environment, 
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exported as BRep entities, converted into Topologic faces, and then linked to the BEM as HB “Shade” 
elements (Figure 8). 

 

 

 

Figure 8: IDF models of the selected pilot site and context shadings. Building 10 on the top, Building 09 on the bottom. 

3.1.3.5 Simulation parameters 
The simulation parameters are then configured through Eppy. These include the simulation run period, 

the shadow calculation method, the daylight saving calculation method, and the output variables, which 
refer to the KPIs to be analysed through the simulation (i.e., zone heating and cooling energy, zone electric 
energy for lighting and equipment, and zone people occupant count).  

The HB model, enriched with this information, is exported as an IDF file. From this point onwards, 
additional information is assigned to the IDF using the Eppy library. 

3.1.3.6 Infiltration 
The infiltration rate of the building is set in the IDF by assigning a “ZoneInfiltration:DesignFlowRate” 

object to all building zones using Eppy, with a flow rate per exterior surface area equal to 0.0001 m³/s-m², 
referring to a tight building for the case study in question. 
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3.1.3.7 Schedules 
Input schedule data is sourced from JSON files containing schedules formatted as the HB APIs requires 

for modelling the “ScheduleRulesets”. A Python function was then created to transform these data into 
IDF “Schedule:Compact” objects. The schedules here considered include fraction types, such as occupancy 
schedules (occupancy density in each zone for every hour of the year) and lighting and equipment 
schedules (percentage of power usage for lighting and equipment per hour) and boolean types, such as 
the availability schedules for heating, cooling, and ventilation systems. 

For occupancy schedules, which are particularly significant for the project, data directly from the 
university's asset management service are considered, as explained in the demonstration section. 

3.1.3.8 Operational data 
Static operational data are instead transferred from the IFC to the IDF. Occupancy data, assigned zone 

by zone to IDF “People” elements, includes people per floor area in operational conditions and the 
corresponding schedules. Lighting data, assigned instead to IDF “Lights” objects, consists of the electric 
power density of lighting devices and relative schedule names. Similarly, equipment data, assigned to 
“ElectricEquipmen” IDF objects, include the electric power density used by electrical appliances and 
relative schedules. Instead, thermal and humidity control data are assigned to IDF “HVACTemplate: 
ZoneIdealLoadsAirSystem” objects. These include temperature and humidity setpoints, related schedules, 
and availability schedules for HVAC systems. Finally, ventilation data are assigned to 
“DesignSpecification:OutdoorAir” objects, which specify the method for calculating outdoor air changes, 
the outdoor airflow per person and zone floor area. 

3.1.3.9 Weather data 
Climatic data are inputted in the BEM using the EPW format. This data can be downloaded from open-

source repositories or custom-created. 
In this case, we used air temperature, relative humidity, atmospheric pressure, wind speed, wind 

direction, and global solar radiation data collected from a weather station close to the analysed building 
over the last three years. To meet the EPW format's requirements, the dataset was processed by averaging 
hourly data across years and missing variables, such as dew point and wet bulb temperatures, were derived 
from the measured data. Meteonorm software [56] was also used to generate missing parameters, such 
as direct normal radiation, diffuse horizontal radiation, global horizontal radiation, direct normal 
illuminance, diffuse horizontal illuminance, total sky cover, opaque sky cover and visibility. Figure 9 to 
Figure 13 summarises the main climatic data from the EPW file. 
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Figure 9: Heating and cooling degree days (EPW analysis in CBE Clima Tool). 

 

 
 

 
Figure 10: Yearly chart with temperature and humidity values (EPW analysis in CBE Clima Tool). 

 

 

 

Figure 11: Daily chart with temperature and humidity values (EPW analysis in CBE Clima Tool). 
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Figure 12: Global and Diffuse Horizontal Solar Radiation (Wh/m²) (EPW analysis in CBE Clima Tool). 

 

 

Figure 13: UTCI thermal stress chart (EPW analysis in CBE Clima Tool). 

3.2 Results and Demonstration 

3.2.1 BEM calibration 
After generating the BEM model using the algorithm described above, the model calibration is 

conducted. In this context, energy calibration refers to the process of adjusting the model parameters so 
that the computed energy values align with real reference data acquired from sensors. This step is crucial 
for ensuring the model accurately reflects the physical system by minimising discrepancies between 
theoretical predictions from simluations and actual measurements. 

3.2.1.1 Assumptions and rationale for energy model calibration 
Since the goal of the energy model is to estimate the building’s energy needs in terms of thermal energy 

required for heating and cooling, we have decided to calibrate the model by tuning its input data. The aim 
is to adjust the simulated indoor temperatures so they closely match those measured by sensors. 

Our underlying assumption is that the building’s energy demand is directly correlated to its thermal 
losses. Since these losses are proportional to the temperature difference between the indoor and outdoor 
environments, if the simulated and measured temperatures are equivalent, the model can be considered 
valid for estimating the building’s energy needs. 

Furthermore, this calibration approach was chosen because temperature data were the only thermal 
measurements available for the building. Other data typically used for calibration – such as gas and 
electricity consumption from utility bills – were available only in aggregated form at the campus level. This 
aggregation made it impossible to assign specific energy consumption values to the individual buildings 
analysed. Therefore, with data available from only a single classroom per building and considering that the 
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building’s construction is quite homogeneous throughout, the temperature calibration was performed on 
that single classroom. This was achieved by adjusting the temperature setpoints during both the summer 
and winter seasons, as well as modifying the related operational schedules. 

3.2.1.2 Calibration data 
For the calibration process, a dataset was constructed containing 8,760 rows—each corresponding to 

one hour of the year—and three columns: a timestamp, measured temperature values (labeled “Real 
Temperature”), and simulated temperature values (labeled “Simulated Temperature”). The real 
temperature represents the hourly average temperature recorded by sensors installed in the classrooms. 
In contrast, the simulated temperature is derived from the “Zone Mean Radiant Temperature” of the 
thermal zone corresponding to the classroom within the energy model, as calculated by EnergyPlus. The 
mean radiant temperature (MRT) is defined as the weighted average of the temperatures of the surfaces 
surrounding an environment, such as walls, floors, ceilings, and windows. 

Given that the sensors at POLIMI are wall-mounted, their readings were chosen for the calibration. The 
sensor data cover the period from February 2024 to January 2025, and the same timeframe was used for 
the climatic data to ensure consistency. Initially, the data were plotted to assess the discrepancies between 
the real measurements and the simulated model output, with a summary presented in the figures below. 

 

 
Figure 14: Hourly Real vs Simulated data before the model calibration (year), Building 10. 

 

 
Figure 15: Hourly Real vs Simulated data before the model calibration (year), Building 09. 
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3.2.1.3 Evaluation of typical weeks 
To assess the discrepancies between the simulated and real data, various metrics were employed at 

different temporal scales. Initially, characteristic weeks were selected for detailed evaluation. These weeks 
were chosen based on the EPW file corresponding to the nearest location to Lecco—downloaded from 
https://climate.onebuilding.org/ - and are as follows: 

• Winter: February 1st – February 6th 
• Summer: July 21st – July 27th 
• Spring: April 14th – April 20th 
• Autumn: October 13th – October 19th 

Special emphasis was placed on the winter and summer weeks, as these periods typically represent the 
extreme conditions—cold in winter and hot in summer—that most significantly affect the building's energy 
performance. 

3.2.1.4 Calibration metrics for the selected weeks 
The calibration was performed on these weeks using the following indicators: 

• MSE (Mean Squared Error): This represents the average of the squared differences between the 
simulated and measured values. A high MSE indicates significant errors between the two datasets. 
Because the errors are squared, larger discrepancies are emphasised. 

• RMSE (Root Mean Squared Error): This is the square root of the MSE, which brings the error back 
to the same unit as the original data (°C in this case). It indicates, on average, by how much the 
simulated values deviate from the measured ones. A high RMSE suggests that the simulation 
model might not be accurately reproducing the real temperature values. 

• Mean Temperature Difference in the Week (MTDW): For each hour of the week, the difference 
between the real and simulated data is calculated, and then the average of these differences is 
taken. This value ensures that, on average, the temperature difference remains low, so that the 
overall daily balance is maintained. Unlike RMSE, this metric takes into account the positive and 
negative signs of the differences. 

• Error in the Week: This is defined as the ratio between the temperature difference and the mean 
temperature of the week, expressed as a percentage. It provides a measure of the magnitude of 
the error relative to the average measured temperature. 

Table 5 and Table 6 provide an overview of the principal values evaluated before the model calibration, 
while Figure 16-Figure 23 depict the comparison between real and simulated data before calibration. 
 

Table 5: Analysis of Real vs Simulated data before the model calibration (winter week), Building 10. 

Period MTDW RMSE MSE Error 
Winter week +3.2 °C + 3.2 °C +10.3 °C2 + 15.8 % 

Summer week - 4.8 °C + 4.7°C +24.7 °C2 - 18.2 % 

Spring week - 2.3°C + 2.8 °C +7.83 °C2 - 9.7 % 

Autumn week + 0.3 °C +0.8 °C +0.66 °C2 + 1.4 % 

 

https://climate.onebuilding.org/
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Figure 16: Hourly Real vs Simulated data before the model calibration (winter week), Building 10. 
 

 
Figure 17: Hourly Real vs Simulated data before the model calibration (summer week), Building 10. 

 

 
Figure 18: Hourly Real vs Simulated data before the model calibration (spring week), Building 10. 
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Figure 19: Hourly Real vs Simulated data before the model calibration (autumn week), Building 10. 

 

Table 6: Analysis of Real vs Simulated data before the model calibration (winter week), Building 09. 

Period MTDW RMSE MSE Error 
Winter week - 1.8 °C + 2.8 °C + 7.86 °C2 - 9.1 % 

Summer week - 6.8 °C + 7.0 °C + 48.46 °C2 - 26.7 % 

Spring week - 7.2 °C + 7.7 °C + 59.85 °C2 - 30.5 % 

Autumn week - 3.0 °C + 3.5 °C + 12.26 °C2 - 13.7 % 

 

 
Figure 20: Hourly Real vs Simulated data before the model calibration (winter week), Building 09. 
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Figure 21: Hourly Real vs Simulated data before the model calibration (summer week), Building 09. 

 

 
Figure 22: Hourly Real vs Simulated data before the model calibration (spring week), Building 09. 

 

 
Figure 23: Hourly Real vs Simulated data before the model calibration (autumn week), Building 09. 

 
The model tuning was carried out through the following modifications: 

• Debugging the Model: 
o Ventilation Schedule: The ventilation system availability schedule, which was originally 

set to OFF during the night, was changed to ALWAYS ON. 
o Window Shading Devices: The shading devices for the windows (such as sunshades), 

initially modeled as Context Shades, were removed and reconfigured as 
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WindowMaterial:Blind along with WindowShadingControl objects in the IDF, after 
detecting some anomalies. 

o Solar Distribution Calculation: The solar distribution method was changed from 
FullInteriorAndExterior to FullExterior to enable a faster calculation when blinds are in 
place. 

o Simulation Timestep: The simulation timestep was set to 4, which sped up the 
simulation process. 

o Temperature Setpoint Schedules: The temperature setpoint schedules, initially 
exported as Schedule:Constant, were modified to Schedule:Compact. This object 
allows for a more flexible and modulated definition of setpoints throughout the day 
(e.g., differentiating between day and night cycles). 

• Tuning Adjustments: 
o Heating Setpoint: The heating setpoint was iteratively adjusted until it was ultimately 

set at 22°C. 
o Heating Setback: The heating setback was iteratively adjusted to 18°C. 
o Heating Operation Schedule: The heating setpoint is applied between 07:00 and 18:00, 

with the setback applied during the remaining hours. 
o Cooling Setpoint: The cooling setpoint was iteratively adjusted until it reached 22°C. 
o Cooling Setback: The cooling setback was iteratively adjusted to 24°C. 
o Cooling Operation Schedule: The cooling setpoint operates between 07:00 and 18:00, 

with the setback applied outside this period. 

The results of these adjustments are detailed in Table 7 and illustrated in Figure 24-Figure 28. 
 

Table 7: Analysis of Real vs Simulated data after the model calibration (winter week), Building 10. 

Period MTDW RMSE MSE Error 
Winter week + 1.6 °C + 1.7 °C + 2.8 °C2 + 7.9 % 

Summer week + 1.1 °C + 1.9 °C + 3.5 °C2 + 4.2 % 

Spring week + 0.7 °C + 1.4 °C + 2.1 °C2 + 3.0 % 

Autumn week + 1.2 °C + 1.5 °C + 2.3°C2 + 5.5 % 

 

 
Figure 24: Hourly Real vs Simulated data before the model calibration (year), Building 10. 
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Figure 25: Hourly Real vs Simulated data after the model calibration (winter week), Building 10. 

 

 
Figure 26: Hourly Real vs Simulated data after the model calibration (summer week), Building 10. 

 

 
Figure 27: Hourly Real vs Simulated data after the model calibration (spring week), Building 10. 
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Figure 28: Hourly Real vs Simulated data after the model calibration (autumn week), Building 10. 

 
 

Table 8: Analysis of Real vs Simulated data after the model calibration (winter week), Building 10. 

Period MTDW RMSE MSE Error 
Winter week +1.1 °C + 2.4 °C + 5.79 °C2 + 5.6 % 

Summer week + 1.0 °C + 2.0 °C + 4.19 °C2 + 3.9 % 

Spring week + 0.1 °C + 2.3 °C + 5.40 °C2 + 0,4 % 

Autumn week + 1.1 °C + 2.3 °C + 5.27 °C2 + 5.0 % 

 
 

 

Figure 29: Hourly Real vs Simulated data before the model calibration (year), Building 09. 
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Figure 30: Hourly Real vs Simulated data after the model calibration (winter week), Building 09. 

 

 
Figure 31: Hourly Real vs Simulated data after the model calibration (summer week), Building 09. 

 

 
Figure 32: Hourly Real vs Simulated data after the model calibration (spring week), Building 09. 
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Figure 33: Hourly Real vs Simulated data after the model calibration (autumn week), Building 09. 

 

3.2.1.5 Calibration on aggregated data 
During the iterative tuning of the temperature setpoints, additional aggregated graphs were analysed 

on both a daily and monthly basis, as shown in the figures below. In particular, the final graph was used to 
inform the ultimate decision. 

 
Building 10 
Figure 34 presents a comparison of the monthly average temperatures, while Figure 35 displays the 

difference between the simulated and real temperature values. In summary, with the exception of 
August—which shows seemingly anomalous data (see Figure 36)—the difference between the real and 
simulated monthly average temperatures is within ±1 °C.  

This outcome is considered satisfactory given the study’s objectives (i.e., an error of less than 5%, 
corresponding to a mean error of under 1 °C on a baseline temperature of 20 °C). 

Regarding the issues observed in August, several factors may explain the anomalies: 

• Connectivity problems: Between July and September, both classrooms experienced 
connectivity issues that resulted in significant data loss. Measurements lasting fewer than four 
hours were interpolated, whereas those exceeding four hours were left blank. 

• Maintenance limitations: Due to the aforementioned connectivity problems, maintenance 
activities— which require access to the internet network—could not be performed during the 
campus summer break. 

• Access restrictions: During the first three weeks of August, access to the first and second floors 
was restricted to students. This may have led to variations in the ventilation system setpoints 
or even forced the shutdown of the cooling battery systems. 
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Figure 34: Daily Real vs Simulated data after the model calibration, Building 10. 

 

 

Figure 35: Monthly Real vs Simulated data after the model calibration, Building 10. 

 

 

Figure 36: Monthly difference between mean real temperature and  mean simulated temperature, after the model 
calibration, Building 10. 

Building 09 
Figure 37 presents a comparison of the monthly average temperatures, while Figure 37 displays the 

difference between the simulated and real temperature values. In summary, with the exception of August 
and January —which show seemingly anomalous data (see Figure 39)—the difference between the real 
and simulated monthly average temperatures is within ±1 °C.  
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This outcome is considered satisfactory given the study’s objectives (i.e., an error of less than 5%, 
corresponding to a mean error of under 1 °C on a baseline temperature of 20 °C). 

Regarding the issues observed in August, several factors may explain the anomalies: 

• Connectivity problems: Between July and September, both classrooms experienced 
connectivity issues that resulted in significant data loss. Measurements lasting fewer than four 
hours were interpolated, whereas those exceeding four hours were left blank. 

• Maintenance limitations: Due to the aforementioned connectivity problems, maintenance 
activities— which require access to the internet network—could not be performed during the 
campus summer break. 

• Access restrictions: During the first three weeks of August, access to the first and second floors 
was restricted to students. This may have led to variations in the ventilation system setpoints 
or even forced the shutdown of the cooling battery systems. 

Regarding the problems observed in the months of January and August, several factors may explain 
the anomalies. During the periods where data inconsistencies were encountered, the sensors 
experienced connectivity issues, and, due to the Campus closure periods for holidays, it was not 
possible to intervene to restore them. Also, given the closure period, changes were made to the 
schedules that could not be tracked, and this likely affected the simulation results. 

 

Figure 37: Daily Real vs Simulated data after the model calibration, Building 09. 

 

Figure 38: Monthly Real vs Simulated data after the model calibration, Building 09. 

 



 

 
 

Grant number: 2022JMRX2A 

P a g e  40 | 69 

 

 

Figure 39: Monthly difference between mean real temperature and mean simulated temperature, after the model 
calibration, Building 09. 

3.2.2 BEM simulation 
Following the successful calibration of the energy model, a simulation was conducted using EnergyPlus 

version 24.1.0 to calculate KPIs that reflect the building’s current energy status for the year 2024.  

3.2.2.1 Simulation settings 
The simulation was set up with specific controls: zone sizing calculations were enabled, while system 

and plant sizing calculations were disabled. The time resolution was configured to 4 timesteps per hour, 
utilising a full exterior solar distribution approach. The PolygonClipping method was employed for the 
shadow calculation, with a periodic update every 30 timesteps and a maximum allowance of 15,000 
figures for shadow overlap, ensuring detailed modeling of solar shading effects while keeping good 
runtime (40 seconds for Building 10 on an ordinary laptop). The overall simulation run period was defined 
as the whole year, covering January 1 to December 31, 2024.  

3.2.2.2 Output variables 
The simulation outputs considered in this study encompass a range of variables that capture both 

energy needs (used for calculating the KPIs) and indoor thermal conditions within the building zones (used 
for calibrating the model). All the variables were reported hourly for each zone for the entire year. 

The output variables of energy demand are: 

• Zone Ideal Loads Supply Air Total Cooling Energy (TCE): provides an aggregate measure of the 
energy required from the ideal supply air system to cool the zones and maintain comfort during 
warmer periods. It was assumed to correspond to the energy demand for cooling the zones. 

• Zone Ideal Loads Supply Air Total Heating Energy (THE): provides an aggregate measure of 
the energy required from the ideal supply air system to heat the zones and maintain comfort 
during colder periods. It was assumed to correspond to the energy demand for heating the 
zones. 

• Zone Electric Equipment Electricity Energy (TEE): records the energy consumption of all 
electric equipment in the zone. Differently from the previous, this variable was not calibrated 
due to the lack of real data for the calibration. 

• Zone Lights Electricity Energy (TLE): measures the energy used for lighting. This variable was 
also not calibrated due to the lack of real data for the calibration. 
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Additionally, there is the output variable “Zone Ideal Loads Supply Air Standard Density Volume Flow 
Rate” which, on a zone-by-zone basis, allows calculating the airflow rate (in m³/s) delivered by the ideal 
loads supply air system serving the zone. This variable is used to calculate: 

• Zone Ventilation Electricity Energy (TVE): the electrical energy required by the air handling 
units (AHUs) to mechanically ventilate the zone. This variable is computed in Python by 
processing the EP results file, assuming that the electrical power of the AHU serving the zone 
remains constant. More precisely, for each zone and for each hour, if the Zone Ideal Loads 
Supply Air Standard Density Volume Flow Rate is greater than 0, then the power of the AHU 
serving the zone is taken into account, multiplied by the time unit to obtain kWh. Finally, the 
data are aggregated and summed at both the zone and building levels. 

To these variables, we added a metric for counting the occupancy count in the zones according to the 
occupancy schedules in the IDF: 

• Zone People Occupant Count (POC): calculated hourly, offers insights into the number of 
individuals in each zone. 

3.2.2.3 Simulation results 
Results from EP simulation are provided at the building level in Table 9 and from Figure 40 to Figure 

44. This data can be aggregated zone by zone or daily, monthly or yearly, as shown in Figure 45 and Figure 
47.  

Table 9: Simulation results at the building level from Energy Plus, Building 10 (calibrated). 

Output Variable ID Value Normalised Value 
Zone Ideal Loads Supply Air 

Total Heating Energy 
TCE 

1,058,655 kWh 
176.11 kWh/m2 

35.42 kWh/m3 
Zone Ideal Loads Supply Air 

Total Cooling Energy 
THE 

360,503 kWh 
59.97 kWh/m2 

12.06 kWh/m3 

Zone Lights Electricity Energy TEE 27,358 kWh 4.55 kWh/m2 

Zone Lights Electricity Energy TLE 14,068 kWh 2.34 kWh/m2 

Zone Ventilation Electric 
Energy 

TVE 
185,748 kWh 

30,9 kWh/m2 

6,22 kWh/m3 

 

Table 10: Simulation results at the building level from Energy Plus, Building 09 (calibrated). 

Output Variable ID Value Normalised Value 
Zone Ideal Loads Supply Air 

Total Heating Energy 
TCE 

1,383,730 kWh 
154,76 kWh/m2 

31.18 kWh/m3 
Zone Ideal Loads Supply Air 

Total Cooling Energy 
THE 

1,097,850kWh 
122.79 kWh/m2 

24.74 kWh/m3 

Zone Lights Electricity Energy TEE 209,174 kWh 23,39 kWh/m2 

Zone Lights Electricity Energy TLE 69,567 kWh 7.78 kWh/m2 

Zone Ventilation 
Electric Energy 

TVE 
459,929 kWh 

51,44 kWh/m2 

10,36kWh/m3 
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Figure 40: Hourly TCE resulting from the EP simulation, Building 10. 

 

 
Figure 41: Hourly THE resulting from the EP simulation, Building 10. 
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Figure 42: Hourly TEE resulting from the EP simulation, Building 10. 

 

 

Figure 43: Hourly TLE resulting from the EP simulation, Building 10. 

 

 
Figure 44: Hourly POC resulting from the EP simulation, Building 10. 
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Figure 45: THE and TCE by zone, Building 10. 

 

   
Figure 46: THE and TCE by zone, Building 09. 

 

 
Figure 47: Monthly THE and TCE for the classroom used for calibration, Building 10. 
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Figure 48: Monthly THE and TCE for the classroom used for calibration, Building 09. 

3.2.2.4 Calculation of DIGITMAN’s KPIs 
The following KPIs are computed starting from the EP results file. 
 

KPI O-1.1 - Utilization Rate 
This is the percentage of time that a specific space is occupied compared to the total available time. It 

helps determine how long the space is being utilised. 
The calculation procedure is as follows: 

1. For each occupied zone, count the number of hours during which the "People Occupant Count" 
is greater than one (i.e., when at least one person is present in the zone, indicating that the 
zone is occupied). 

2. For each zone, compute the zone utilisation rate by dividing the number of occupied hours by 
8,760 (the total number of hours in a year). 

3. For the entire building, calculate the weighted average of the zone utilisation rates, using the 
maximum number of occupants in each zone as the weighting factor. 
 

KPI O-1.2 - Occupancy Rate 
This is the average number of occupants in a space compared to its maximum capacity. It provides 

insights into the utilisation of individual space and identifies spaces that may be over or underutilised. 
The calculation procedure is as follows: 

1. For each occupied zone, for every hour of the year, divide the People Occupant Count by the 
maximum number of occupants for that zone to obtain the hourly occupancy rate. 

2. For each zone, calculate the average of the hourly occupancy rates to obtain the zone's yearly 
occupancy rate. 

3. For the entire building, calculate the weighted average of the zone occupancy rates, using the 
maximum number of occupants in each zone as the weighting factor. 

 
KPI O-2.1 - Energy Need 

This is equivalent to the tons of oil equivalent to the ideal energy needed for heating, cooling, lighting, 
ventilation and using the appliances of a building or its zones. It helps understaing how much electricity is 
needed for operating the zone or building. 

The calculation procedure is as follows: 
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1. For each zone, obtain the annual values for THE, TCE, TLE, TEE, and TVE. 
2. If natural gas is used for heating: 

a. Multiply THE (in kWh, as provided by EnergyPlus) by the conversion factor from kWh to 
Smc. 

b. Multiply the resulting THE (in Smc) by the conversion factor from Smc to TEP. 
c. Sum TCE, TLE, TEE, and TVE to obtain the total electricity consumption, and multiply this 

sum by the conversion factor from kWh to TEP. 
d. Add the converted THE (in TEP) to the total electricity (in TEP). 

3. If electricity is used for heating: 
a. Sum THE, TCE, TLE, TEE, and TVE to obtain the total electricity consumption, and multiply 

this sum by the conversion factor from kWh to TEP. 

 
KPI O-3 - Energy Costs 

Measures the expenses associated with electricity, natural gas, and district heating consumption within 
a building or facility. It allows for identifying areas of higher energy consumption to implement energy-
saving measures and reduce overall energy expenses towards energy efficiency. 

The calculation procedure is as follows: 

1. For each zone, obtain the annual values for THE, TCE, TLE, TEE, and TVE. 
2. If natural gas is used for heating: 

a. Multiply THE (in kWh, as provided by EnergyPlus) by the conversion factor from kWh to 
Smc. 

b. Multiply the resulting THE (in Smc) by the conversion factor from Smc to EUR, getting 
heating energy cost (HEC). 

c. Sum TCE, TLE, TEE, and TVE to obtain the total electricity consumption, and multiply this 
sum by the conversion factor from kWh to EUR, obtaining electricity energy cost (EEC). 

d. Sum HEC and EEC to get the total costs (in EUR). 
3. If electricity is used for heating: 

a. Sum THE, TCE, TLE, TEE, and TVE to obtain the total electricity consumption, and multiply 
this sum by the conversion factor from kWh to EUR. 

 
KPI O-4 - CO2 Emissions due to Energy Use 

Amount of CO2 emissions produced as a result of the building's energy consumption from the grid. It 
allows for tracking of the environmental impact in terms of CO emissions due to the use of energy within 
a building or its zones. 

The calculation procedure is as follows: 

1. For each zone, obtain the annual values for THE, TCE, TLE, TEE, and TVE. 
2. If natural gas is used for heating: 

a. Multiply THE (in kWh, as provided by EnergyPlus) by the conversion factor from kWh to 
Smc. 

b. Multiply the resulting THE (in Smc) by the conversion factor from Smc to kgCO2/eq, 
getting hypothetical emission due to heating use (HEE). 

c. Sum TCE, TLE, TEE, and TVE to obtain the total electricity consumption, and multiply this 
sum by the conversion factor from kWh to kgCO2/eq, obtaining hypothetical emission 
due to electricity use (EEE). 

d. Sum HEE and EEE to get the total costs (in kgCO2/eq). 
3. If electricity is used for heating: 
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a. Sum THE, TCE, TLE, TEE, and TVE to obtain the total electricity consumption, and multiply 
this sum by the conversion factor from kWh to kgCO2/eq. 

The conversion factors used are: 

- kwh_to_smc [57] = 10.944 
- smc_to_tep [58] = 0.000082 
- kWh_to_tep [58] = 0.0008598 
- smc_to_EUR [59] = 0.4987 
- kWh_to_EUR [60] = 0.164 
- smc_to_CO2 [61] = 2.02 
- kWh_to_CO2 [61] = 0.467 
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4 How-To logic 
Regarding the "How-to" methodology, this section will explain the operations performed for Task “T3.2 

– Operation data acquisition and post-processing”, and Task “T3.3 – Operation predictive methodology 
development”. The first task, concerning the acquisition of operational data on indoor environments, was 
described in WP1 and is briefly summarized below. It involves the process of downloading the data and 
concatenating them to obtain a single file for each specific classroom. The concatenation phase also 
includes data post-processing operations and the extraction of ancillary information. 

The development of T3.3 involves "black-box" methodologies for energy assessment. In the 
methodology section, the algorithms that were considered and selected for the creation of the predictive 
modules will be detailed. 

4.1 Methods and Tools 

4.1.1 Overview and database structure 
The Data Acquisition techniques, previously detailed in deliverables related to WP1 and based on the 

Brick schema for measurement classification, were subsequently implemented in the following phases, 
which are briefly summarized below: 

1. Definition of the overall database of measurements, related to the monitored classrooms in the 
POLIMI building, as shown in Section Errore. L'origine riferimento non è stata trovata.. 

2. Selection of pre-processing methodologies to obtain the parameters considered in the KPIs. 
3. Definition of the selected methodologies for data set analysis and the creation of a decision 

support system using predictive methods for the recognition and prediction of temperature 
and consumption profiles of the case studies. 

4. Multi-criteria analysis (to be developed in WP5). 

The final application and validation are performed on the monitored classrooms within the POLIMI 
building stock, described in D1.1 of WP1. 

 
This section presents the structure of the database obtained from the data acquired during the 

measurement period by the sensors. The first phase consists of aggregating data from all sources and 
acquisition systems; in this phase, all data are organized to standardize them. Subsequently, through 
scripts written in Python, all data are aligned and concatenated. It is in this phase that derived 
measurements are calculated, static information is inserted, and the parameters necessary for the 
calculation of KPIs are extracted, with the aim of having a single dataframe containing all the necessary 
measurements. 

The first process executed is the calculation of the daily mean temperature based on the data from the 
weather station. The Running Mean Temperature (RMT) is then calculated using a moving average with a 
three-day window, which is crucial for labeling and classifying days according to their respective seasons. 
The possible classifications are Winter and Summer, with the condition that if the RMT is below 15°C, the 
season is classified as winter; otherwise, it is classified as summer. Based on this, indoor temperatures are 
classified, as presented in D1.1, at the various measurement points. Following this initial classification, the 
comfort level within the indoor spaces is then classified according to the various measurement points. The 
calculation of PMV (Predicted Mean Vote) and PPD (Predicted Percentage of Dissatisfied) is performed 
using the pyThermalComfort library [62]. Since the measurement period constituting the dataset extends 
for almost a year, it is necessary to parameterize some variables, both on a daily basis and based on the 
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operation of ventilation systems. The metabolic rate (MET) of the occupants is set to 1.2, which is the 
value assigned to students in a classroom. The estimation of clothing (clo) is performed based on the 
temperature measured at 6 a.m. If the temperature is below -5°C, the clo value is 1. If the temperature is 
between -5°C and 5°C, the calculation is: 

𝑐𝑙𝑜 = 0.818 − 0.0364 ∗ 𝑡𝑜𝑢𝑡  
Between 5°C and 26°C, the calculation is: 

 𝑐𝑙𝑜 =  10−0.1635 − 0.0066 ∗ 𝑡𝑜𝑢𝑡 
Any temperature above that sets the clothing value to 0.46. Air velocity was determined based on the 

periods when the machinery was operating. Knowing the flow rates of the machinery and the size of the 
supply vents, it is possible to estimate the air velocity, an estimate validated through measurements in the 
classrooms. When the AHU is off, an air velocity of zero is assumed, but a perceived velocity is still 
considered, expressed by the following formula: 

𝑣 = 𝑣𝑎𝑖𝑟 + 0.3 × (𝑚𝑒𝑡 − 1) 
Where vair is the initial air velocity, set to 0, the met value represents the metabolic rate of the occupant, 

and the term 0.3 × (met - 1) adjusts the air velocity according to the activity level. Hence all the parameters 
have been calculated, the final calculation for PMV and PPD can be finished and appended to the 
dataframe. 

Occupancy estimation was therefore performed based on the CO2 levels measured inside the 
classroom. This estimation also depends directly on the operation of the ventilation systems and requires 
two separate formulas. The first formula is used when the ventilation systems are in operation, taking into 
account that the building does not have operable windows and therefore lacks natural ventilation, 
estimating the number of people based on the increase or decrease in carbon dioxide. The formula, derived 
from the literature[63], is presented below: 

𝑛 =
𝑄

𝑘 ∗ 𝑒−
𝑄
𝑉

(𝑖−𝑠)
∗ (𝐶𝑖 − 𝐶0 − (𝐶𝑠 − 𝐶0) ∗  𝑒−

𝑄
𝑉

(𝑖−𝑠)
  

Where n represents the number of occupants, Q is the air flow rate, V is the volume of the room, Cs is 
the CO2 concentration at the initial instant, Ci is the concentration at the i-th instant, and C0 is the CO2 
concentration outside the building, which is assumed to be constant throughout the day and is measured 
inside the classroom after one hour of machinery operation, knowing the air volume has been changed six 
times, it is assumed that the CO2 level is equal to the outdoor level, with the classroom still empty. Finally, 
k is the per capita CO2 production rate for people who are seated and studying; it is assumed that the 
value is constant and equal to 0.0056 m3/s[64]. The second formula is used, precisely, when the systems 
are off and measures the variations of CO2 over time, relating them to the volume. The formula is as 
follows: 

𝑛 =
(𝐶𝑖 − 𝐶𝑠) ∗ 𝑉

𝑘 ∗ (𝑖 − 𝑠)
 

The final steps consist of normalizing the occupancy values for the calculation of KPIs, where the 
occupancy, derived from the schedules provided by the administrative office, is scaled as a percentage 
value, and the same process is performed for the estimated occupancy values. The delta between the 
estimated actual occupancy and the scheduled occupancy is then calculated to determine the Standard 
Deviation of Occupancy Variability. These estimations are made for the calculation of the KPIs related to 
Use, namely the O-1 KPIs. 

4.1.2 Data preprocessing 
Data preparation is the initial step performed to enable analysis and the application of machine learning 

methodologies to the data. The operations involve loading and preliminary cleaning of the data. Since the 
information is distributed across multiple CSV files, a function is developed to import each dataset, 
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appropriately rename columns, and remove unnecessary ones. To improve dataset quality and eliminate 
redundant or insignificant variables, a filter based on a list of patterns is applied, removing columns that 
do not make a relevant contribution to the analysis. The output of the function consists of two distinct 
DataFrames, corresponding to the two source files, which are subsequently concatenated into a single 
data structure to allow a joint analysis of information from different sources. 

After this initial standardization phase, the dataset is further refined by filtering based on two main 
criteria: seasonality and occupancy pattern. Only data corresponding to specific seasonal intervals 
(summer, winter) are selected in order to analyze specific climatic conditions. Concurrently, the dataset is 
filtered according to the occupancy level of the spaces, excluding situations not representative of the 
normal use of the spaces. These two criteria allow for the isolation of data portions more consistent with 
the analysis objectives, reducing the presence of irrelevant or potentially distorting elements. 

To ensure the reliability of the analysis, an outlier detection and removal process based on the 
Interquartile Range (IQR) was implemented. This method allows for the identification and removal of 
anomalous values that significantly deviate from the central distribution of the data. For each numerical 
variable, the first quartile (Q1) and the third quartile (Q3) are calculated, from which the Interquartile 
Range (IQR = Q3 - Q1) is obtained. Values that fall outside the range defined by [Q1 - 1.5 × IQR, Q3 + 1.5 
× IQR] are considered outliers and replaced with null values (NaN). However, this methodology is not 
applied to variables related to the operation of the Air Handling Units (AHUs) because these systems 
operate in discrete mode with distinct ON/OFF states. When the AHU is deactivated, some parameters 
may assume very low or null values, which would be incorrectly classified as outliers by the IQR method. 
To avoid the removal of valid data, these variables were excluded from the filtering process, ensuring a 
correct representation of their operating conditions. 

A critical aspect of the dataset is the presence of discontinuities due to interruptions in data 
transmission, which introduce missing values (NaN). To avoid altering originally absent data, a mask 
identifying the NaNs already present in the dataset is generated before applying the IQR method. Once 
the outliers are removed, the new missing values are interpolated only if they result from the removal 
phase and were not already absent in the original dataset. Interpolation is performed using a linear method, 
which ensures a gradual transition between adjacent points, preserving the temporal consistency of the 
series. 

After data cleaning, the dataset is segmented into daily intervals, as shown in Figure 49 to Figure 53, 
dividing the time series into subsets corresponding to individual days. For each day, a complete time 
interval with a 10-minute resolution, corresponding to the original sampling frequency, is created. 

 
Figure 49: Daily sequences of the Indoor Temperature 
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Figure 50: Daily sequences of the CO2 

 
Figure 51: Daily sequences of the VOCs 

 
Figure 52: Daily sequences of the PM2.5 

 

Figure 53: Daily sequences of Thermal Power 

However, not all daily sequences contained a complete set of measurements due to possible 
interruptions in data collection or the presence of missing values. To ensure the reliability of the analysis, 
only days in which all required measurements are available for the variables of interest are selected. This 
process ensures that each daily segment is representative of the complete system dynamics, avoiding 
distortions due to partial or incomplete data. Once segmented, the data are organized into separate 
DataFrames for each monitored parameter, allowing a detailed analysis of daily trends and facilitating the 
subsequent clustering and modeling phase. The entire process described constitutes the initial phase of 
data pre-processing, which guarantees the quality and consistency of the dataset before the application 
of advanced analysis techniques. 



 

 
 

Grant number: 2022JMRX2A 

P a g e  52 | 69 

 

4.1.3 Data postprocessing 
Following the pre-processing phase, our focus shifted to the identification of latent temporal patterns 

within the extensive dataset. To address this challenge, we turned to clustering, an unsupervised learning 
technique has been employed to allure the identification of similar observations, thus revealing intrinsic 
structures in the data that would otherwise be difficult to discern. The resulting reduction in 
dimensionality and complexity is a crucial step in making the data more manageable and interpretable, 
paving the way for subsequent modeling analyses. Given the multifaceted nature of our data, a multi-
algorithm approach was adopted, comparing the performance of four distinct clustering techniques. This 
strategy allowed us to assess which algorithm was best suited to capture the specificities of the different 
variables under consideration. 

The first algorithm considered was K-Means, a classic and widely used partitional method. K-Means 
operates iteratively to minimize the sum of squared distances between data points and the centroid (the 
mean) of the cluster to which they are assigned. Its simplicity and speed make it a natural starting point; 
however, this method is sensitive to outliers and assumes that clusters are spherical and of similar size. 

In parallel, we explored K-Medoids, a more robust variant of K-Means. Instead of utilizing the mean as 
the cluster center, K-Medoids selects an actual data point (the medoid) that minimizes the sum of 
dissimilarities with the other points in the cluster. This characteristic renders it less influenced by outliers 
and more suitable for data with non-spherical distributions. 

In order to overcome the limitations of partitional methods, two density-based algorithms were 
introduced: DBSCAN (Density-Based Spatial Clustering of Applications with Noise) and its hierarchical 
derivative, HDBSCAN (Hierarchical DBSCAN). The distinguishing feature of DBSCAN is its capacity to 
identify clusters of arbitrary shape and to automatically detect noise points (outliers). The operation of 
HDBSCAN is predicated on two key parameters: eps, which defines the radius of a neighborhood, and 
“min_samples”, which establishes the minimum number of points within that neighborhood for a point to 
be considered a "core point" and give rise to a cluster. The HDBSCAN algorithm extends DBSCAN by 
constructing a hierarchy of clusters at different density scales. This approach facilitates the identification 
of clusters of varying sizes and densities, thereby offering enhanced flexibility and adaptability to complex 
data structures. HDBSCAN necessitates the definition of “min_cluster_size”, which represents the 
minimum size of a cluster, and “min_samples”, which plays a role analogous to that in DBSCAN, albeit with 
some interpretative nuances. 

4.1.3.1 Clustering phase and hypertuning 
Prior to the implementation of the clustering algorithms, the data underwent a standardization 

transformation using PowerTransformer. This operation is imperative when variables manifest skewed or 
non-normal distributions, a prevalent occurrence in environmental data. PowerTransformer implements a 
non-linear transformation (specifically, a Yeo-Johnson transformation) that aligns the data to a distribution 
more closely resembling the Gaussian. This step has been shown to enhance the efficacy of algorithms 
such as K-Means and K-Medoids, which are particularly sensitive to deviations from normality and 
implicitly assume a certain symmetry in the data. To assess the quality of the obtained clusters and guide 
the selection of the optimal model, two complementary metrics were adopted: the Silhouette Score and 
the Davies-Bouldin Index (DBI). 

• The Silhouette Score is a metric that evaluates the cohesion and separation of clusters by 
calculating the difference between the average distance from other points in the same cluster 
(cohesion) and the average distance from the nearest cluster (separation). A Silhouette value 
close to +1 indicates a satisfactory grouping, with the point well-placed in its own cluster and 
far from others. Conversely, values approaching 0 signify the presence of overlap between 
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clusters, while negative values suggest that the point in question may have been erroneously 
assigned to a different cluster. 

• The DBI, conversely, emphasizes the internal dispersion of clusters and their mutual distance. 
A low DBI signifies compact and well-separated clusters, whereas high values indicate 
dispersed or overlapping clusters. 

Each clustering algorithm is characterized by one or more hyperparameters, which influence the 
algorithm's behavior and performance. Achieving optimal results necessitates identifying the combination 
of hyperparameters that is most appropriate for the particular characteristics of the data under 
consideration. This process, termed hypertuning or hyperparameter optimization, was systematically 
executed for each algorithm. In the case of K-Means and K-Medoids, the number of clusters (n_clusters) 
varied within a range from 2 to 20. For each setting of “n_clusters”, the Silhouette Score, the DBI, and 
their delta were calculated, and the configurations that yielded the optimal results were recorded. For 
DBSCAN, two parameters were optimized: eps, varied between 0.1 and 3.0 with increments of 0.1, and 
“min_samples”, explored between 2 and 50 with unit increments. Only configurations that generated at 
least 3 clusters, excluding those that produced an excessive number of small clusters or a single dominant 
cluster, have been considered. In the case of HDBSCAN, have been varied “min_cluster_size” between 5 
and 50 with increments of 5, and “min_samples” between 2 and 50 with increments of 2. Again, 
configurations with at least 3 clusters have been favored, discarding those that did not meet this criterion. 
For DBSCAN and HDBSCAN, the Silhouette Score was the sole metric of evaluation, excluding the DBI. 
This exploration of the hyperparameter space enabled the identification of the configuration that 
optimally captured the underlying structure of the data for each algorithm and variable, the results of the 
best clusters are presented in Table 11. It is noteworthy that the DBSCAN and HDBSCAN algorithms did 
not consistently demonstrate optimal performance. In the majority of cases, such as those involving CO2, 
VOC, and PM, the algorithms identified only a single cluster. 

Table 11: Parameters identified for each clustering method after hyperparameters tuning 

Cluster Method Number of cluster identified Silhouette score DBI score 

Temperature K-Means 2 0.5618 0.5810 

K-Medoids 2 0.5637 0.5740 

DBSCAN 3 0.3078 - 

HDBSCAN 3 0.1983 - 

CO2 K-Means 2 0.2798 1.3210 

K-Medoids 2 0.2688 1.3738 

DBSCAN 1 0.0841 - 

HDBSCAN 3 -0.0421 - 

VOC K-Means 2 0.3020 1.2232 

K-Medoids 2 0.3001 1.2181 

DBSCAN 1 -0.0912 - 

HDBSCAN 3 -0.2660 - 

PPM2.5 K-Means 2 0.3894 0.9713 

K-Medoids 2 0.3921 0.9458 

DBSCAN 165 -0.0668 - 

HDBSCAN 3 -0.1345 - 

AHU_Total Thermal Power K-Means 8 0.6451 0.5248 

K-Medoids 4 0.6449 0.6288 

DBSCAN 1 0.5679 - 

HDBSCAN 2 0.6021 - 
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Following the clustering process, an analysis was conducted to verify the balance of the clusters and 
their distribution. The purpose of the analysis is to verify the quality of the clusters identified after the 
hypertuning process. As anticipated, the process did not yield robust clusters for the pollutants; this can 
be observed from the results of the balance analysis. For that reason k-Means clusters has been selected 
as clustering algorithm due to the general performance and overall balance in cluster distribution. Table 
12 shows the results of the analysis, highlighting the strong imbalance for the DBSCAN and HDBSCAN 
methods, where the label -1, representing an invalid cluster, was assigned in the majority of the clusters. 
For the sake of brevity, the summary values have been included as a link to the table, as there are 165 
clusters. 

Table 12:  Cluster Balance Analysis 

K-Means K-Medoids DBSCAN HDBSCAN 
Cluster N Items % Cluster N Items % Cluster N Items % Cluster N Items % 

Temperature 

1 243 60,599% 0 247 61,596% -1 105 26,185% -1 155 38,653% 

0 158 39,401
% 

1 154 38,404% 1 101 25,187% 0 98 24,439% 

- - - - - - 0 98 24,439% 1 76 18,953% 

- - - - - - 2 97 24,190% 2 72 17,955% 

CO2 

1 422 51,463% 2 281 34,268% -1 742 90,488% -1 510 62,195% 

0 398 48,537
% 

0 204 24,878% 0 78 9,512% 2 175 21,341% 

- - - 3 179 0,218292
68 

- - - 1 77 9,390% 

- - - 1 156 0,190243
9 

- - - 0 58 7,073% 

VOC 

0 452 55,122
% 

0 474 57,805% -1 765 93,293% -1 699 85,244% 

1 368 44,878
% 

1 346 42,195% 0 55 6,707% 1 105 12,805% 

- - - - - - - - - 2 9 1,098% 

- - - - - - - - - 0 7 0,854% 

PM2.5 

DigitMan_Table_ClusterResults.xlsx 

Thermal Power 

0 61 40,397
% 

1 64 42,384% -1 91 60,265% 0 83 54,967% 

2 33 21,854
% 

0 51 33,775% 0 60 39,735% 1 61 40,397% 

4 29 19,205
% 

3 33 21,854% - - - -1 7 4,636% 

1 25 16,556% 2 3 1,987% - - - - - - 

5 1 6,623% - - - - - - - - - 

3 1 6,623% - - - - - - - - - 

 
  

https://univpm.sharepoint.com/:x:/r/sites/PRIN_22/Documenti%20condivisi/1.%20Actions/WP3%20Operation%20predictive%20module%20development/_deliverables/D3.1%20-%20KPIs%20and%20predictive%20methods%20for%20operation%20task/D.3.3.1_ML_Models/DigitMan_Table_ClusterResults.xlsx?d=wda0fa9a67cdd48de894035db76b4252f&csf=1&web=1&e=D21z4y
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The clustering results based on temperature data (Figure 54: Temperature cluster trend lines) have 
produced the following daily profiles, which clearly encompass indoor temperatures during both summer 
(cluster 0, red line) and winter (cluster 1, blue line) periods. In Figure 55 are presented the daily profiles 
associated with the daily average profile of the clusters. 

 
Figure 54: Temperature cluster trend lines 

 
Figure 55: Cluster visualization of daily profiles associated with the daily average profile of the Temperature cluster 

The clustering results based on thermal power data (Figure 56) have produced the following daily 
profiles, associated with corresponding daily profiles (Figure 57). 

 

 
Figure 56: Thermal Power cluster trend lines 
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Figure 57: Cluster visualization of daily profiles associated with the daily average profile of the Thermal Power cluster 
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Following the completion of the clustering phase and the selection of the optimal models, a significant 
data aggregation phase was initiated. This phase had three objectives: (1) the consolidation of the results 
obtained, (2) the integration of information from disparate sources, and (3) the preparation of the data for 
the subsequent construction of predictive models. The initial step involved the addition of the cluster 
labels (assigned by the optimal algorithms) to the original transposed data, which represent the time series 
of the different variables. This enabled the association of each temporal observation with its cluster 
membership. Subsequently, a transformation was implemented, transitioning from a "wide" format 
(comprising one column for each hourly measurement) to a "long" format (comprising a single column for 
the hour and a column for the measured value). This transformation, designated as unpivoting or melting, 
was executed using the Pandas melt function. The "long" format is more conducive to time series analysis 
and modeling, as it enables the application of functions and transformations to the data. 

The subsequent critical step entailed the incorporation of supplementary information from the original 
pre-processed DataFrame. This DataFrame encompassed variables measured at varying scales (building, 
classroom, single station) and with disparate temporal frequencies. To reintegrate this information into 
the aggregated data, we constructed a lookup dictionary. This dictionary maps the combination of date 
and time to specific values of variables present in the original DataFrame. 

The culmination of this process was a refined, structured, and enriched dataset, prepared for the 
subsequent construction of classification models, such as decision trees, which will be the focus of future 
phases of our study. This dataset signifies an effective synthesis of the information contained in the 
original data, integrating the temporal patterns identified through clustering with the contextual variables 
that are pertinent for predictive modeling.   

4.2 Predictive methods 

4.2.1 Decision Tree – Random Forest 
The Random Forest algorithm is an ensemble learning method that utilises a collection of decision trees 

for classification or regression tasks. To minimise correlation among the individual trees, each tree is 
constructed using a randomly resampled subset of the training data, a technique known as bootstrap 
aggregating (bagging). During prediction, each tree independently classifies the input, effectively casting 
a "vote" for its predicted class. The final prediction of the Random Forest is determined through a majority 
vote, aggregating the predictions of all individual trees. 

4.2.1.1 Features selection – Correlation Matrix 
The aggregated dataset (df_Temperature_DT.csv or df_TP_DT.csv), comprising predictor variables 

(features) and the target variable (cluster label), served as the starting point. Preliminary operations were 
executed, including the removal of the 'Date' column, deemed unnecessary for modeling as temporal 
information was already encoded within other variables. Missing values were handled conservatively, 
replaced with -1 to prevent data loss and treat them as a separate informative category. The dataset was 
then partitioned into two sets: X, containing the predictor variables, and y, representing the target variable. 

Prior to model construction, a correlation analysis was undertaken to elucidate the relationships 
between the predictor variables and the target variable. This analysis served two primary purposes: firstly, 
to identify the most promising features, recognizing that variables exhibiting a high absolute correlation 
with the target are potentially more informative for classification; and secondly, to identify potential 
redundancies, where highly correlated predictor variables might provide similar information, suggesting 
the possibility of removing some for model simplification. 

Two tools were used for the correlation analysis: 
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1. The first tool was the general correlation matrix, which is a method of displaying the Pearson 
correlations between all pairs of predictor variables. 

2. The second tool was the correlation with the target, which calculates the Pearson correlation 
between each predictor variable and the target variable. This provides a direct measure of the 
potential importance of each feature for classification. 

The analysis yielded features with a correlation (in absolute value) greater than a predefined threshold 
(0.4), enabling the selection of the most relevant variables (Figure 58). 

 
Figure 58: Correlation Matrix based on K-Means cluster of Temperature 

The selected features are Air Temperature, Global Radiation, DMT (Daily Mean Temperature), Relative 
Humidity, PPD (People Percentage Dissatisfied), PM2.5, CO2, Total Thermal Power, Estimated Occupancy 
Mean, SON (Scheduled Occupancy Normalized). 
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4.2.1.2 Model Hypertuning 
Decision trees, and especially Random Forests, have several hyperparameters that affect their 

performance. Finding the optimal combination of hyperparameters is crucial to obtain an accurate and 
generalizable model. Two optimization techniques have been studied: 

• The Bayesian optimization constructs a probabilistic model of the objective function (model 
accuracy) and uses it to intelligently select the next hyperparameters to evaluate, balancing 
exploration (trying new combinations) and exploitation (leveraging combinations that have 
yielded good results in the past). It is particularly efficient when evaluating the objective 
function is expensive (in terms of time or resources). 

• Grid Search method, which is more exhaustive but potentially more resources expensive, 
evaluates all hyperparameter combinations within a predefined grid. It is appropriate when the 
hyperparameter space is relatively small and the goal is to explore every possible combination. 

Bayesian optimization 
Bayesian optimization was used to fine-tune the hyperparameters of the Random Forest model. This 

process relied on the definition of a specific objective function. This function, when given a set of 
hyperparameters, would train a Random Forest model and subsequently return to its average accuracy. 
Accuracy was determined using a cross-validation technique, which is described in more detail in the 
following sections. The search space for the Bayesian optimization included a range of plausible values for 
the key Random Forest hyperparameters. These hyperparameters included the number of trees in the 
forest, the maximum depth of individual trees (max_depth), the minimum number of samples required to 
split an internal node, and the minimum number of samples required to form a leaf node. 

The Bayesian optimizer was configured to perform a series of iterations. It started the process with 5 
randomly selected starting points within the defined search space. This was followed by 15 iterations, 
guided by the probabilistic model built internally by the optimizer. During each iteration, different 
hyperparameter combinations were evaluated and the probabilistic model was updated based on the 
observed performance. At the end of all iterations, the optimizer returned the hyperparameter 
combination that gave the highest average accuracy across the cross-validation folds. 

Grid Search (GridSearchCV) 
For the grid search, the following hyperparameters were considered: The number of trees in the forest, 

the maximum depth of the trees, the minimum number of samples required to split an internal node, the 
minimum number of samples required in a leaf node, and finally the function measuring the quality of a 
split (either "gini" or "entropy"). GridSearchCV evaluated all combinations of values within a predefined 
range for each of these hyperparameters. It then returned the hyperparameter combination that produced 
the best average accuracy through cross-validation. In some cases, consideration was given to selecting a 
model with parameters within one standard deviation of the best performing model. 

4.2.1.3 Crossfold validation 
To reliably evaluate model performance and to guide both Bayesian optimization and grid search, cross-

validation was used. This technique involves partitioning the training dataset into multiple subsets (folds) 
and iteratively using one-fold as the validation set and the remaining folds as the training set. A 10-fold 
cross-validation was used, meaning that the dataset was divided into 10 parts. For each hyperparameter 
combination, 10 models were trained, each using 9-fold for training and 1-fold for validation. The average 
accuracy across these 10 models was used as an estimate of the model's performance for that specific 
hyperparameter combination. Cross-validation provides a more robust estimate of model performance 
than a single train/test split because it reduces the variability due to random selection of training and test 
data. Once the optimal hyperparameters were identified (via Bayesian optimization or grid search), the 
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final model was trained using the entire training data set. The performance of the final model was then 
evaluated on the test dataset (which had not been used for either hyperparameter optimization or cross-
validation), providing an unbiased estimate of its ability to generalize to new data. 

4.2.2 Long Short-Term Memory (LSTM) 
LSTM networks are a specialized type of Recurrent Neural Network (RNN) designed to address the 

vanishing gradient problem that can hinder the training of standard RNNs on long sequences. Unlike 
standard RNNs, which have a simple repeating module, LSTMs incorporate a complex memory cell 
structure with "gates" (input, forget, and output gates) that regulate the flow of information. These gates 
allow the LSTM to selectively remember or forget information over long periods, enabling it to capture 
long-range dependencies in sequential data. This makes LSTMs particularly well-suited for tasks involving 
time series analysis, natural language processing, and other applications where the context of past 
information is crucial for accurate predictions. LSTMs are trained using backpropagation through time 
(BPTT), a modified version of the backpropagation algorithm adapted for sequential data. 

4.2.2.1 Preparation layer 
Unlike decision trees, LSTMs require a specific three-dimensional time series input format: 

• Hourly observations were grouped by day, resulting in a sequence of 144 measurements for 
each day. 

• Creating a three-dimensional array where the first dimension is represented by the number of 
days, the second dimension represents the length of the time sequence (144 daily 
measurements), and finally the third dimension represents the number of predictor variables 
(features) used for each measurement. 

• A normalization of the data has been performed by using a min-max scaler of the feature values 
within the range [0, 1]. This step is important to improve the stability and convergence speed 
of the neural network training. 

• Since the target variable (cluster) is categorical, it was transformed into a one-hot 
representation. In this encoding, each class is represented by a binary vector, where a single 
element is 1 (indicating class membership) and all others are 0. 

4.2.2.2 LSTM model architecture 
An LSTM model has been designed with the following architecture: 

• LSTM layer: A single LSTM layer of 50 units. The LSTM unit is the core of the network and 
contains memory cells and gates that control the flow of information. The “input_shape”  
argument specifies the shape of the input sequences (144, number of features). The hyperbolic 
tangent (tanh) activation function was used, a common choice for LSTMs. 

• Dropout layer: A dropout layer with a rate of 30% was added. Dropout randomly deactivates 
a fraction of connections during training, helping to prevent overfitting and improve model 
generalization. 

• Dense (Intermediate) Layer: A dense (fully connected) layer with 25 units and a Rectified Linear 
Unit (ReLU) activation function. This layer adds further learning capacity to the model. 

• Dense Layer (Output): A final Dense layer with a number of units equal to the number of classes 
(clusters) and a Softmax activation function. Softmax produces a probability distribution over 
the classes such that the sum of the probabilities is 1. 



 

 
 

Grant number: 2022JMRX2A 

P a g e  61 | 69 

 

4.2.2.3 Model training 
Prior to training, the LSTM model was compiled, a step that defines the optimization algorithm, the loss 

function and the evaluation metrics. The optimization algorithm chosen was the Adam optimizer, a widely 
used and efficient stochastic gradient descent algorithm. The loss function chosen was 
“categorical_crossentropy”, which is well suited for multi-class classification tasks where the target 
variable is represented in a one-hot coded format. Finally, the performance evaluation of the model was 
primarily based on accuracy, which was tracked as the key metric during training. 

The data set was divided into training and test sets, with 80% used for training and 20% for testing. 
The LSTM model was then trained using the training set. The training process was configured with a total 
of 100 epochs, where each epoch represents a complete iteration over the entire training dataset. A batch 
size of 128 was used, meaning that 128 samples were processed in each mini-batch during gradient 
descent optimization. Crucially, the test set was also provided as validation data during training. This 
allowed continuous monitoring of the model's performance on unseen data throughout the training 
process. By observing the model's performance on the validation set, it was possible to identify potential 
signs of overfitting, where the model begins to memorize the training data rather than generalizing to 
unseen examples. 

4.3 Results 
This study explored the application of machine learning techniques, specifically Random Forest (an 

advanced implementation of decision trees) and Long Short-Term Memory (LSTM) recurrent neural 
networks, to the classification of temporal patterns in multivariate environmental data. Several 
considerations and evaluations were made in the study. Different data preprocessing methods were 
investigated, and it was found that raw data without any filtering should be used, while for all other 
parameters, pre-clustering operations were necessary. However, it was found that the outlier removal 
process did not significantly affect the clustering methods and, consequently, the subsequent steps. 
Nevertheless, it was decided to perform it in order to obtain a slight gain in cluster regularity. The above 
mentioned applies to the temperature related clusters. 

4.3.1 Decision Tree 
Two approaches to hyperparameter optimization were evaluated for the Random Forest model: 

Bayesian Optimization and Grid Search (GridSearchCV). Both methods yielded comparable results in terms 
of accuracy, although Bayesian optimization proved to be more efficient in terms of computational time, 
requiring the evaluation of fewer hyperparameter combinations. In addition to the hypertuning methods, 
an option that considered the model with a parameter that had an accuracy value not less than the best 
model by a value of one standard deviation ("one standard error rule") was evaluated. 

The optimal configuration determined for the temperature dataset includes the following 
hyperparameters 

• n_estimators: Number of trees in the forest, ranging from 10 to 200. 
• max_depth: Maximum depth of the trees, ranging from 1 to 8. 
• min_samples_split: Minimum number of samples needed to split a node, ranging from 1000 to 

3000. 
• min_samples_leaf: Minimum number of samples required in a leaf node, varying between 100 

and 1600. 
• criterion: Function to measure the quality of a split, the choice is between 'gini' (default) and 

'entropy'. 
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The feature selection based on the Pearson correlation with the target variable proved to be effective 
in reducing the dimensionality of the problem, focusing attention on the most informative variables (with 
a minimum correlation threshold of 0.4) and improving the interpretability of the model. 

The final results (Table 13), evaluated on an independent test set, indicate an accuracy of approximately 
0.967 for Grid Search and 0.954 for Bayesian Optimization for the temperature model. 

Table 13: Performance Log of the Decision Tree Hyperparameters search 

Deliverable Content Type Link 

3.1.4.1.1 
Log of the hyperparameters 
tuning phase 

Log 
DigitMan_Log_DecisionTree_Hyperparam
eters.txt 

 
The results of the Random Forest algorithm, generated with GridSearchCV hypertuning are shown in 

Figure 59. The rules are reported in Table 14. 

 
Figure 59: Graph representation of Decision Tree with GridSearchCV optimization 

The results of the Random Forest algorithm, generated with Bayesian hypertuning are shown in Figure 
60. The rules are reported in Table 14. 

 

Figure 60: Graph representation of Decision Tree with Bayesian optimization 

4.3.2 LSTM 
The LSTM model, designed to capture long-term dependencies in time series, required specific data 

preparation, with hourly observations transformed into three-dimensional daily sequences. The optimal 
model architecture includes an LSTM layer of 50 units, followed by a dropout layer (rate 0.3), an 
intermediate dense layer (25 units, ReLU activation), and an output dense layer (softmax activation). 

Model training, performed for 100 epochs with a batch size of 128, showed stable convergence, with 
a final accuracy on the test set of 0.584 on the train set and a value accuracy of 0.59 on the validation 
data set.  The quality of the trained model can be estimated by analyzing the trend loss function over 
epochs, for both the training set (train loss) and the validation set (validation loss). As shown in Figure 61, 
the progressive and simultaneous decrease in both curves indicate learning and generalization ability. 
Another metric to analyze is the evolution of accuracy during training, shown in Figure 62. As can be seen, 
the gap between the training and validation accuracy curves is extremely narrow. While this indicates that 
the model is not overfitted, the limited growth in accuracy across epochs suggests underfitting. This 
implies that the model possesses insufficient capacity to capture the complexity of the data. 

https://univpm.sharepoint.com/:t:/r/sites/PRIN_22/Documenti%20condivisi/1.%20Actions/WP3%20Operation%20predictive%20module%20development/_deliverables/D3.1%20-%20KPIs%20and%20predictive%20methods%20for%20operation%20task/D.3.3.1_ML_Models/DigitMan_Logs_DecisionTree_Hyperparameters.txt?csf=1&web=1&e=TYqYG1
https://univpm.sharepoint.com/:t:/r/sites/PRIN_22/Documenti%20condivisi/1.%20Actions/WP3%20Operation%20predictive%20module%20development/_deliverables/D3.1%20-%20KPIs%20and%20predictive%20methods%20for%20operation%20task/D.3.3.1_ML_Models/DigitMan_Logs_DecisionTree_Hyperparameters.txt?csf=1&web=1&e=TYqYG1
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Figure 61: Loss trend graph 
Figure 62: Accuracy trend graph 

4.4 Conclusions and future perspectives 
Although both models demonstrated good classification capabilities, the Random Forest model 

achieved higher accuracy compared to the LSTM model, especially with the Grid Search optimization. This 
suggests that for this particular dataset and classification task, the non-linear relationships between the 
features and the target are better captured by an ensemble of decision trees. The effectiveness and speed 
of the grid search technique for the Random Forest model is also highlighted. In contrast, the Bayesian 
optimization, although more sophisticated, did not lead to significant improvements in accuracy despite 
the reduction in computational time. 

The LSTM model, although less accurate, provides a complementary approach that is able to explicitly 
model temporal dependencies. Future research directions might include: 

• Integration of additional variables: The inclusion of exogenous variables (such as weather 
forecasts) could enrich the models and improve their performance. 

• Comparison with other algorithms: Exploring other machine learning algorithms (e.g., support 
vector machines, gradient boosting) could provide additional benchmarks. 

• Sensitivity analysis: A more in-depth analysis of the influence of individual features on 
classification could provide useful insights for interpreting the results. 

In conclusion, this study demonstrates the potential of machine learning techniques, in particular 
Random Forest and LSTM, for the analysis and classification of complex temporal patterns in 
environmental data. The results obtained provide a basis for the development of decision support systems 
in the study focus areas. The methodology used and explained above has produced different models with 
different accuracies. Table 14 below summarizes the contents of the models obtained from the data 
collected from the case study. These models include different formats such as Joblib, H5 and Keras. 

Table 14: ML models produced based on DIGITMAN methodology 

Deliverable Content Type Link 
3.1.4.2.1 
Random 
Forest Model 
- GridSearch 

Random Forest rules calculated 
with GridSearchCV 

Model Temperature_RF_GS_Model.joblib 

3.1.4.2.2 
Random Forest rules calculated 
with Bayesian Optimization 

Model Temperature_RF_BS_Model.joblib 

https://univpm.sharepoint.com/:u:/r/sites/PRIN_22/Documenti%20condivisi/1.%20Actions/WP3%20Operation%20predictive%20module%20development/_deliverables/D3.1%20-%20KPIs%20and%20predictive%20methods%20for%20operation%20task/D.3.3.1_ML_Models/Temperature_RF_GS_Model.joblib?csf=1&web=1&e=ZFdn09
https://univpm.sharepoint.com/:u:/r/sites/PRIN_22/Documenti%20condivisi/1.%20Actions/WP3%20Operation%20predictive%20module%20development/_deliverables/D3.1%20-%20KPIs%20and%20predictive%20methods%20for%20operation%20task/D.3.3.1_ML_Models/Temperature_RF_BS_Model.joblib?csf=1&web=1&e=rTQAhk
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Deliverable Content Type Link 
Random 
Forest Model 
- Bayesian 
3.1.4.2.3 
LSTM Model 
– H5 export 

Long Short-Term Memory 
trained model. H5 legacy format 

Model Temperature_LSTM_model.h5 

3.1.4.2.3 
LSTM Model 
– Keras 
export 

Long Short-Term Memory 
trained model. Keras 
compatibility format 

Model Temperature_LSTM_model.keras 

 
  

https://univpm.sharepoint.com/:u:/r/sites/PRIN_22/Documenti%20condivisi/1.%20Actions/WP3%20Operation%20predictive%20module%20development/_deliverables/D3.1%20-%20KPIs%20and%20predictive%20methods%20for%20operation%20task/D.3.3.1_ML_Models/Temperature_LSTM_model.h5?csf=1&web=1&e=d5gWpg
https://univpm.sharepoint.com/:u:/r/sites/PRIN_22/Documenti%20condivisi/1.%20Actions/WP3%20Operation%20predictive%20module%20development/_deliverables/D3.1%20-%20KPIs%20and%20predictive%20methods%20for%20operation%20task/D.3.3.1_ML_Models/Temperature_LSTM_model.keras?csf=1&web=1&e=ReHkVW
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